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Comparative Evaluation of Animated Scatter Plot Transitions

Nils Rodrigues , Frederik L. Dennig , Vincent Brandt, Daniel A. Keim , and Daniel Weiskopf

Fig. 1: We implemented six animation techniques to transition between scatter plots of different dimensions from the same underlying
data set. The movement of data points during the animations is either based on rotation of 3D cubes (left) or splines (right). To evaluate
the animated transitions, we conducted a crowdsourced user study where participants had to trace individual dots (center) or clusters.

Abstract—Scatter plots are popular for displaying 2D data, but in practice, many data sets have more than two dimensions. For the
analysis of such multivariate data, it is often necessary to switch between scatter plots of different dimension pairs, e.g., in a scatter
plot matrix (SPLOM). Alternative approaches include a “grand tour” for an overview of the entire data set or creating artificial axes
from dimensionality reduction (DR). A cross-cutting concern in all techniques is the ability of viewers to find correspondence between
data points in different views. Previous work proposed animations to preserve the mental map between view changes and to trace
points as well as clusters between scatter plots of the same underlying data set. In this paper, we evaluate a variety of spline- and
rotation-based view transitions in a crowdsourced user study focusing on ecological validity. Using the study results, we assess each
animation’s suitability for tracing points and clusters across view changes. We evaluate whether the order of horizontal and vertical
rotation is relevant for task accuracy. The results show that rotations with an orthographic camera or staged expansion of a depth
axis significantly outperform all other animation techniques for the traceability of individual points. Further, we provide a ranking of
the animated transition techniques for traceability of individual points. However, we could not find any significant differences for the
traceability of clusters. Furthermore, we identified differences by animation direction that could guide further studies to determine
potential confounds for these differences. We publish the study data for reuse and provide the animation framework as a D3.js plug-in.

Index Terms—Visualization, scatter plot, animation, quantitative user study, multidimensional data, coordinated and multiple views

1 INTRODUCTION

Scatter plots are a useful visualization for a pair of numerical dimen-
sions [12,50]. But data often has more than two attributes. For efficient
exploration and analysis in such a case, it is helpful to visualize the same
data samples in multiple views that show different dimensions [31].

Up to a relatively low number of dimensions, it is possible to visual-
ize the data with combinations of full-sized scatter plots [31] or with a
SPLOM for a focus+context [4] approach. However, as the number of
data attributes increases, more and smaller plots are necessary. At the
same time, viewers experience a higher cognitive load to link the sepa-
rately shown data points from many plots in a single coherent mental
map. The grand tour tool by Asimov [3] introduces a sequence of 2D
projections to provide viewers with a dense overview of the original
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data. Computational methods for DR [24, 28] allow showing data sets
with arbitrary dimensionality in a 2D scatter plot. The resulting artifi-
cial display dimensions can summarize a data set but are challenging
to interpret and trace back to the original data attributes.

We argue that these new artificial dimensions could be treated
like existing data dimensions. The problem for the analysis of low-
dimensional data could then be considered as equivalent to the analysis
of data with an arbitrary number of dimensions. Effectively switching
between scatter plots of original and artificial dimensions while main-
taining a consistent mental map might benefit data analysts and support
visual analysis for explainable artificial intelligence (XAI). Therefore,
we advocate the use of animation to show correspondence between
scatter plots.

Analysts need to be able to trace data points between the different
views—presented sequentially or simultaneously. There are multiple
possible solutions to the issue of perceiving correspondence between
dots in different plots. For instance, if the data set contains only a
few samples, the plots could show them with varying shapes or colors
without requiring explicit user input. However, typical humans are not
able to remember all intricacies that would be necessary to distinguish
dozens of samples [29].

Animation is a well-known technique for users to solve correspon-
dence tasks [10] and supports data sets with hundreds of samples. As a
benefit, other visual variables, e.g., color and shape, remain available to
encode additional and better-fitting data attributes. Various animations
for transitions between different scatter plot views were suggested in
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prior work [15,16,25], including the grand tour [3]. We want to explore
the design space of animations to identify fitting animation types for the
generic tasks of tracing points and cluster interactions between pairs of
2D scatter plots. We aim for ecological validity beyond tasks with only
a few simultaneously traceable data points. Thus, this paper compares
multiple spline-based and 3D-rotation-based transitions in a study with
hundreds of data points.

Our main contribution is a preregistered crowdsourced user study
with 170 participants. We designed it to quantitatively evaluate and
compare the effectiveness of different animation techniques for accu-
rately tracking individual data points and cluster interactions with a
focus on ecological validity. We analyze the results and report the
findings. Finally, we publish the recorded study data, the source code
of the animation framework for transitions between 2D scatter plots (as
a plugin for D3.js [5]), and an interactive demo of the study [6, 38, 40].

2 RELATED WORK

The study behind this paper relates to previous work in multiple respects.
First and foremost, we will discuss animation techniques in general,
and for scatter plots in particular. Then, we will go into studies with
animated visualizations as stimuli. Finally, we will touch on the topic
of eye movement in the form of smooth pursuit because participants
will be trying to follow moving points and clusters in this study.

2.1 Animated Visualization in General

Animation is not a new concept, and there have been multiple pub-
lications on the topic. Moving visualizations are often used to show
temporal changes or trends in the underlying data [26, 36, 47]. Gapmin-
der [45] is one such example, where the movement of dots in a scatter
plot encodes the changes of country-level metrics over time. There
are also static visualizations for changes over time that can be used
effectively [32, 36]. However, our work does not focus on mapping
time to a dedicated third dimension or to the movement of data points.
With this paper, we want to evaluate the use of animation purely for cor-
respondence across the transition between two scatter plots of different
attributes from the same data set.

Storytelling is another field of research with multiple publications [9,
14, 48] about the use of animation. We target the interactive visual
exploration and analysis of data sets. Hence, we will not evaluate the
suitability of animation for storytelling but only for tracking individual
data points and interactions between clusters. Animation has also been
used to transition between different types of visualization [14,49], show
how data is aggregated [25], or display datamations [20]. Again, these
use cases do not fit our overarching goal behind this paper.

Animated visualization is suited for the analysis of moving sources
of data. This is especially noticeable in the context of sports, where
situations from a game can be analyzed post hoc to learn about strate-
gies, strengths, and weaknesses [18]. However, even in such a case,
the animation is tightly linked to the dimension of time. Yee et al. [53]
used animation to support the interactive exploration of graphs with
a radial tree layout by linearly interpolating polar coordinates of the
nodes while constraining the ordering and orientation of nodes. Their
spiral-shaped animation paths are a good match for radial graph layouts
but are not intuitively linked to our targeted use of scatter plots.

2.2 Animations for Scatter Plot Visualizations

Thompson et al. [48] used animation for the correspondence of data
points between different plots. In their work, however, all visible data
remained constant, and only the plot type changed. Our motivation
is more related to work like the grand tour by Asimov [3]. His work
produces an animation through a sequence of projections onto 2D
planes and is supposed to show the shape of data by taking into account
all data dimensions. As Asimov stated, the “movies” with the projected
data are difficult to understand, even with only four source dimensions,
and require extensive experience with the visualization. Our evaluation
targets the correspondence between pairs of the original or projected
data dimensions. Therefore, we only animate between two scatter plots
without generating “movies” that show all data dimensions. We argue

that short transitions and longer periods for observation of a single
scatter plot are closer to real-world applications of visual analytics.

The method by Elmqvist et al. [16] is a better fit for the goal of
our evaluation. It starts with a regular 2D scatter plot and temporarily
extends it by adding a third dimension for depth. A rotation around
an unchanged axis, e.g., height, results in role reversal between the
width and depth axes (see the generic concept on the left side of Fig. 1).
Afterward, the new depth axis is removed, and the result is simply the
exchange of one data dimension for another. The proposed concept of
“rolling the dice” goes even further and creates sequences of multiple
rotations [16]. It provides users with controls to navigate the space of
all 2D scatter plots within a matrix and preserves brushed data points
between views. Sanftmann and Weiskopf [43] proposed a related analy-
sis tool with a technique that is primarily 3D. It provides a 3D SPLOM
for navigation as well as a 3D scatter plot for details and only reverts to
2D when showing thumbnails on the surface of the SPLOM. Further-
more, they presented a technique for smooth animations while changing
one or two dimensions simultaneously. The resulting projection leads
to consistent motion of dots. While we implemented 3D rotations of
scatter plots, our focus was not on a full-fledged visual analytics tool.

In contrast to the previous approaches, Heer et al. [23] identified
effective design guidelines for creating transitions between different
types of statistical charts, e.g., scatter plots and bar charts. Kim et
al. [25] presented staged transitions between visualization types to
depict aggregation. Both works tackle other problems related to ani-
mated plots. Our study only compares and evaluates which scatter plot
transition is most effective for the user.

2.3 User Studies on Animated Visualizations
There is prior work on the evaluation of animated visualizations. In-
teraction with, and cognitive effects of, animated visualization are the
focus of two qualitative studies by Nakakoji et al. [30]. While they
reported animation as beneficial, they also identified core challenges
for designing interactive and animated visualization. Yao et al. [52]
presented a research agenda for visualization in motion and analyzed
how well viewers could read data from moving charts. However, their
focus lies on “entire visualizations moving, rather than data [points]
[...] or individual parts of [the] visualization [having] different [...]
directions, trajectories, or speeds.”

Animation, i.e., time-varying graphical representation, is often used
for visualizing time-oriented data [26]. Financial data, for example, typ-
ically appears as time-series and can be animated for analysis. Tekušová
and Kohlhammer [47] evaluated their system with a usability study
that included novices and experts from the financial industry. Their
approach focused on the user experience and system design. Work
by Robertson et al. [36] contains a quantitative evaluation of different
methods for visualization of trends in data: traces, small multiples, and
animation. The results include qualitative feedback and a comparison
between the techniques with respect to how accurately study partici-
pants can extract information from the underlying data. Animation is
reported to perform worse but provides more enjoyment to the users. A
newer quantitative study by Brehmer et al. [7] also compares animation
against small multiples of scatter plots. Its results confirm that viewers
of small multiples complete tasks objectively faster but with subjec-
tively lower confidence. Our study also uses objective measures for
task accuracy. In addition, we record subjective user ratings to adjust
the perceived overall speed and task difficulty.

There are parallels between our work and previous studies with
regard to visual primitives and animation techniques. The study by
Chevalier et al. [10] targets the viewer’s ability to follow up to three of
30 animated dots. It compares the condition of simultaneous movement
against various movements with temporal offset, i.e., staggered ani-
mation. The authors controlled for task difficulty by proxy of various
metrics that correlated with task accuracy. The study results show
that “staggering has a negligible, or even negative, impact on multi-
ple object tracking performance.” Another study, by Du et al. [15],
compares straight paths against bundled paths for animated dots. The
results indicate that bundling is of benefit when working with more
data points or when there is a higher level of occlusion between dots.
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Our study is similar because it identifies groups of data points and uses
time offset and trajectory bundling to animate dots between scatter
plot views. However, we examine more types of animations and use
a real-world data set with more samples to get results that are more
representative of visual analytics tasks. We strive for ecological validity
beyond relatively small laboratory setups.

Our work is related to that of Dragicevic et al. [13]. They studied
object tracking performance in scatter plots for different temporal
distortions, e.g., constant speed transitions, slow-in/slow-out, etc. In our
study, we do not vary the temporal distortion. We are more interested
in exploring differences in the animation paths, but also include a
temporal offset technique without changing the distortion type. Wang
et al. [51] conducted a study with an animation design for transitions
between scatter plots. Their technique is based on vector fields to
create smooth, non-linear transitions for clustered data with support
for manual sketching. Wang et al. used computational metrics and
conducted a user study to compare their approach to trajectory bundling
and straight line transitions. We want our study to yield ecologically
valid results without relying on theoretic metrics and we want to include
rotation transitions, which might be more intuitive for users. The latter
might be highly relevant for widespread adoption in the field.

Our goal is not to provide a new analysis method for information
gain but to help humans make better use of the already existing and
intuitive scatter plots. We analyze the use of animation for showing
correspondence between data points in two static visualizations. There-
fore, we restrict the evaluation to the traceability of visual elements and
do not include tasks that require interpretation of the underlying data.

2.4 Studies on Smooth Pursuit Eye Movements
Our study requires participants to follow moving points and clusters.
As some visual targets have constant movement, we expect the onset of
smooth pursuit eye movements [37] for parts of the transitions. Smooth
pursuit maintains a static image of a moving target on the fovea. This
allows the environment of the target to change, which might lead to
motion blur. Previous eye-tracking studies showed that the movement
direction of targets has an impact on various metrics related to smooth
pursuit [27, 42]. Our study is not primarily focused on the analysis
of the human ability to control such smooth pursuit eye movements,
and in Sec. 4, we describe how we try to avoid large influences from
smooth pursuit. While we do not expect it, there might be an effect of
animation direction on the performance of tracking a visual target.

3 DESIGN SPACE

This section describes the design space for modeling animated transi-
tions between different scatter plots of the same data set.

3.1 Dimensions and Views
For a data set with a total of D∈N attributes, we define the combination
of two dimensions x and y as Dx ×Dy. A view change from D1 ×D2
to D3 ×D4 does not introduce or remove data points. This change only
alters their position in the scatter plot from Ps to Pe with P ∈ display
dimensions Dx ×Dy. Therefore, the data points can be animated on
a path between Ps and Pe when transitioning to another combination
of data dimensions in the scatter plot. This technique avoids sudden
changes in position and helps preserve the viewer’s mental map. Since
scatter plots only visualize two data dimensions, there are two types of
plot changes from the user’s perspective:
1D Transitions only exchange one of the two plot dimensions for a
new data dimension.
2D Transitions exchange both dimensions of the plot.

3.2 Transitions
This subsection describes the types of transitions we evaluated in our
quantitative user study. Note that there are many hypothetical possi-
bilities to explore the design space and vary the animations, but the
practical execution and analysis of a user study become increasingly
complex when the number of variations increases. Therefore, we limit
our study to two main types of dot movement with three subtypes each:
(1) spline-based transitions and (2) rotation-based transitions [16].
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(a) straight
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(b) bundled

Ps1

Pe1
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(c) time offset

Fig. 2: Examples of spline-based animation paths for point movement
in transitions between scatter plots. Gray ellipses symbolize the area
covered by clusters. Time is encoded as path color (start end).

(a)

(b)
(c)

Fig. 3: 1D and 2D transitions in a SPLOM. Each square represents a cell
of the SPLOM. Arrow (a) depicts a horizontal 1D transition, (b) a vertical
1D transition, and (c) a 2D transition.

Spline-based Transitions
All spline-based transitions work independently of the number of ex-
changed dimensions, i.e., whether it is a 1D or 2D transition, since they
only require a start point Ps and end point Pe.

Straight lines (STR) are the most basic type of movement and a
special case of a spline-based approach. The path between Ps and Pe is
determined by simple linear interpolation, resulting in a straight line
(see Fig. 2a). In the case of 1D transitions, the points move parallel to
the changed dimension.

Bundled lines (BUN) add complexity over the straight approach by
expanding the transition design into the spatial dimension (see Fig. 2b).
They use clustering and control points to create splines. In the first step,
the DBSCAN algorithm determines a set of clusters Cs and Ce in the
start and end pair of normalized data dimensions. Secondly, we group
all data points that belong to the same pair of clusters C1×C2 ∈Cs×Ce.
We calculate the mean position M1 and M2 of all points in C1 and C2.
For each group, we select a set of control points B on the straight line
between M1 and M2. Finally, we compose the splines for each data
point’s path in the transition by combining the individual start and end
positions with the common control points of each group.

Time offset (TIM) expands the transition design into the temporal
dimension (see Fig. 2c). This method combines the technique from

STR and information about cluster pairs C1 ×C2 from BUN.
However, each pair of clusters is animated one after the other at a
different time offset, such that each cluster is animated separately.
Contrary to prior work [13], we only apply an offset and do not vary the
temporal distortion between individual dot movements. While research
into the adaptation of the distortion would be of interest, it would also
increase the study size with additional variables.

Rotation-based Transitions
All rotation-based transitions use a 3D cube. To perform a 1D transition,
we encode the new data dimension as depth and then rotate the cube
around the unchanged dimension (see Fig. 1, left). We realize 2D
transitions through a sequence of 1D transitions: vertical first, then
horizontal; or horizontal first, then vertical. In the context of SPLOMs,
this method corresponds to moving along columns and rows to arrive
at the desired view (see Fig. 3, arrows (a) and (b)).

Staged rotation (STA) is our implementation of the method by
Elmqvist et al. [16]. This prior work is at the core of our selection
of rotation transitions and motivates our comparative study. Figure 4
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Fig. 4: Staged rotation ( STA) with a 3D cube happens in three sequen-
tial stages (left to right). The scatter plots at the beginning and end of the
transition share one data dimension. The thick colored lines represent
data dimensions during the transition.

perspectiveorthographic orthographic

Fig. 5: Perspective rotation ( PER) has no dedicated stages (left to
right). It gradually changes from an orthographic to a perspective camera
and back again while simultaneously rotating the cube. The thick, colored
lines represent data dimensions during the transition.

shows the individual steps of the transition technique. As preparation,
we encode the new data dimension as depth (z-axis). However, this
depth is not perceivable because we use an orthographic camera. In
the first stage of animation, we smoothly change the values in the
camera’s projection matrix to form a perspective camera. This turns
the depth information visible and reveals the new data dimension as
depth dimension (z-axis) of the scatter plot. Rotation of the 3D scatter
plot within the graphics scene is the second stage. The third and
final stage collapses the exchanged z-axis by gradually returning to an
orthographic camera matrix, while the data points remain static within
the graphics scene.

Perspective rotation (PER) works similarly to STA rotation but
without stages. The extension and collapse of the depth axis and the
rotation of the 3D scatter plot take place simultaneously. Figure 5
shows the concept.

Orthographic rotation (ORT) never uses a perspective camera. We
only rotate a 3D scatter plot in the graphics scene to exchange the depth
axes. However, the z-axis component of the data points is imperceptible
with the orthographic camera. Therefore, this technique is a simplified
version of the original rotation approach that lacks an explicit display
of depth information and has no need for individual stages.

The source code published in the supplemental material [40] contains
details about the used cameras and their parameters, allowing for the
construction of the transformation matrices used in computer graphics.

3.3 Non-evaluated Alternatives
Our D3.js [5] plug-in provides a framework for further animations.
Splines could theoretically animate points between more than two
scatter plots simultaneously. Instead of using cluster-related control
points, we could use the positions of data points in intermediate plots
as control points. This would even allow for animations similar to
the grand tour [3]. However, the longer the animation, the more
opportunities to lose track of data points or clusters of interest. The
latter is especially true as the clusters change between the individual
subspaces. We want to evaluate the animation techniques with a fair
and practically relevant setup that allows analysts to get an overview of
the data and extract finer details. Our selection of transitions matches
the tasks of tracing individual points and clusters. While the work of
Elmqvist et al. inspires the rotation animations [16], we specifically
designed the BUN and TIM techniques to potentially help the
viewer to trace clusters. We argue against the use of both bundling and
time-offsets with the rotation animations because they might interfere
with the perception of the rotation effect and confuse viewers.

4 HYPOTHESES

Now that we have a list of six animated transitions, we want to eval-
uate them comparatively. Our assessment focuses on accuracy and
disregards completion time because all animations have a constant
non-user-adjustable runtime. Analysts extract information from data
visualizations with various methods. While animation could encode
a data dimension by itself, e.g., by showing changes over time, the
selected transitions are only meant to help preserve the analyst’s mental
model of the data. We state the following four hypotheses to explore
this notion more precisely.

We aim to evaluate the chosen animations concerning how well a
single data point can be traced from one plot to the next. Thus, we pose
the following hypothesis to evaluate the tracing accuracy.
Hypothesis HP (P for point task): There is an animation-dependent
difference in task accuracy for point tracing.

It is relatively easy to find clusters in the 2D subspace of a single scat-
ter plot. But it is nontrivial to trace how the clusters evolve between two
scatter plots with different axes. Other approaches, such as cluster-flow
parallel coordinates [41], can show how the clusters interact between
2D subspaces. We suspect that animation can serve the same purpose
while avoiding the need to learn a new visualization technique. There-
fore, our work aims to evaluate how well interactions between clusters
of different scatter plots can be traced using the selected animations.
Hypothesis HC (C for cluster task): There is an animation-dependent
difference in cluster task accuracy.

Previous work suggests a difference in the ability of humans to follow
objects vertically vs. horizontally through eye movement [27, 34, 42]
(see also Sec. 2.4). In practice, analysts need to be able to trace points
in both directions. Therefore, we use square scatter plots that are small
enough to trace data points without large eye movements. With these
assumptions, we expect a negligible influence on task accuracy from
vertical vs. horizontal dot movement. However, statistical tests can only
detect a difference. Hence, we will perform tests for a difference and
interpret a lack thereof as an indication of a negligible effect.
Hypothesis HD (D for direction): There is no direction-dependent
difference in task accuracy.

In addition to the purely objective task accuracy with points and
clusters, we also want to compare the animation techniques concerning
subjective user ratings. We aim to evaluate whether the user sees
animated scatter plot transitions as valuable. We do this in a similar
fashion to Robertson et al. [36]. However, they explored whether users
found animation generally beneficial.
Hypothesis HR (R for rating): There is an animation-dependent
difference in subjective user rating.

5 METHODS

Our main goal is to comparatively evaluate the different animation
techniques for transitions between 2D scatter plots of a multivariate
data set. To this end, we designed and preregistered a study [39].
We documented the hypotheses, statistical tests, and sample sizes in
the preregistration before collecting and analyzing any data. In the
following, we describe the setup of our study in detail. The supple-
mental material [40] contains select video recordings and an interactive
demonstration of all study tasks.

5.1 Tasks
Point Task: As mentioned in Sec. 4, we expect the animation to have
an impact on how well users can trace a point during the transition
between two plots. To check HP, we show a scatter plot and highlight
a single point. The participant should then follow this point along its
animation path and mark the position where the point came to rest.
The viewer clicks anywhere within the final scatter plot to indicate the
estimated position. We determine the error by measuring the distance
between the actual data point and the selected location.

We use the existing auto-mpg data set modified by Quinlan [35] to
measure task accuracy under realistic conditions. It has 398 data points
with 8 attributes. Some attributes are continuous (e.g., weight), while
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others have only discrete values (e.g., number of cylinders). The latter
data type is not particularly well suited for scatter plots or animation as
it may lead to a high degree of overplotting and, subsequently, hinder
the identification of individual dots. However, in practice, data does
not always fit the visualization technique, and data dimensions with
few discrete values are part of realistic use cases.
Cluster Task: For this study, we identified three types of possible
interactions between data clusters in different scatter plots: (1) no
interaction, the cluster remains mostly as it was, (2) the cluster splits
into multiple smaller clusters, and (3) the cluster merges with another.
Outside of this study, other interactions are theoretically possible. For
instance, a new cluster forms, and an existing one dissolves or spreads.
However, they require users to calculate or intuitively estimate how
densely the data points need to be packed concerning their surroundings
to form a cluster. Depending on the individual, this might be highly
subjective and yield different results. Thus, we limit our study to the
three described interactions between data clusters.

Finding a real data set with only the presented three cluster interac-
tions is not trivial. A variation in the total number of visible clusters
might influence viewers. Even if they lose track of the cluster they are
trying to follow, a decrease in total clusters might suggest a merge. In
order to reduce confounding effects, we use a generative model [44] to
produce consistent cluster interactions. The resulting data set contains
600 data points that are distributed into 5 clusters (80 points each) and
200 randomly positioned distractors. The cluster task has more dots
than the data set for the point task. This corresponds to real-world
applications, where the targets for analysis of larger data sets often shift
from individual points to clusters.

We implement the interactions by moving half the points from one
cluster to another. Depending on the point of view, this is either a
split or a merge. The other clusters are not involved in any interaction
(remain). We choose specific target clusters for the study task to ensure
that all three conditions appear equally often. During the study, the
initial view highlights all cluster data points that should be traced. When
the animation begins, all dots revert to the same look. Afterward, the
participants can select the perceived cluster interaction by clicking one
of three buttons. We use the ratio of correct answers as a measurement
for the study.

5.2 Procedure
As preparation for the study, we randomly select combinations of axes
and a data point or cluster to trace. We compose three combinations
of start and end views for transitions. From these, we create one
horizontal and one vertical 1D transition. Then, we generate three
more combinations and use them for 2D transitions. We replicate them
for each start direction of rotation-based animations (horizontal first,
then vertical; vertical first, then horizontal). Spline-based animations,
however, have no “first” axis of movement. Therefore, we generate
three additional combinations. Each animation is tested with 2×3 1D
and 2×3 rotation-based or 6 spline-based 2D transitions to provide the
necessary number of trials for the subsequent statistical analysis.

We use the same tests for all animations and participants, albeit in
random order. We test the point task and the cluster task in sequence to
avoid frequent switches: 12 point tasks for each animation first, then
12 cluster tasks for each animation. Since every participant gets to
perform every task with every animation, we have a within-subjects
study design.

It is important to choose the dots for the point task randomly and
re-use the same selection with all animations and participants to mini-
mize unwanted side effects. In addition, our evaluation is comparative
between animation techniques and does not provide absolute values.
Nevertheless, the dot density and overdraw around each data point
might have a confounding influence on the task difficulty [7, 10], and
there might be other still unknown factors. We are not aware of a
metric that reliably yields a complete and robust task difficulty for
tracing a data point. Even if there were a metric that worked on a
single data point, how would we combine the many values for an entire
scatter plot? Even if there were a metric that worked on a static scatter
plot, how would we select a single value when the metric constantly

Begin animation

(a) before animation

Remained
mostly as it was

Merged
into other cluster

Split
into multiple clusters

(b) after animation

Fig. 6: User interface for the cluster task. The target cluster is only
highlighted in red before the animation. After the transition, participants
respond whether the cluster remained the same, merged, or split.

changes during the animation? What single value would then represent
the potentially time-varying task difficulty? In a nutshell, we have no
method to calculate a complete and reliable metric for difficulty and,
therefore, mitigate confounding effects through random selection. Our
study design will only show what animation technique leads to better
results. Further research is necessary to reveal the underlying causes of
expected differences, which might include dot overlap.

During the study, participants are shown a static scatter plot with
a highlighted dot or cluster (see Figs. 1 and 6a). They click a button
to start the animation. Afterward, they select a target position and
click to submit their answer for the point task. For cluster-related tasks,
the participants single-click one of the buttons representing a cluster
interaction (see Fig. 6b) to indicate what they have perceived.

We append a short questionnaire to each block of tasks for an anima-
tion. There, we ask for subjective feedback on these statements: (1) The
animation was not too fast. (2) The paths of individual points / clusters
are easy to follow. (3) I would like to use this animation frequently.
Participants respond on a 5-point Likert scale: strongly disagree (–2),
disagree (–1), neutral (0), agree (+1), strongly agree (+2). Generally,
we regard the Likert scale as having ordinal values and only use the
associated numbers on a rational scale when calculating mean values
and standard deviation.

Similar to prior published questionnaires [8, 22], all statements are
phrased in a way that allows the use of a consistent scale. We acknowl-
edge that there might be effects from participant bias based on the
consistently positive phrasing. However, we argue that the benefits of
such a wording in the circumstances of our study outweigh possible
drawbacks. In a crowdsourced setup, where participants rely on the
studies to provide income, time is an important factor and quick an-
swers are inherently incentivized. A consistent Likert scale reduces
the mental load for participants to provide answers, thus reducing
erroneous inputs. Most importantly, our analysis is a comparative eval-
uation. We do not provide absolute values, and any systemic bias is
accounted for by only providing relative differences. Absolute values
would be difficult to interpret, especially as the midpoint of the Likert
scale might be misused for undecided answers [2]. Additionally, the
recorded answers from the main study show no inherent bias toward
agreement or disagreement.

5.3 Training

At the beginning of each task type, we introduce how the task should be
performed and how the participants can submit their answers. Before
each new animation, we provide four task instances as training. They
are generated in the same way as the regular tasks, but we provide
feedback after the participant submits a response, i.e., for the point task,
we reveal the final position of the dot that should have been followed,
and for the cluster task, we show whether the provided answer was
correct or wrong.
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Fig. 7: Results of the pilot studies with different animation speeds (a) and
point counts (b). Participants rated their agreement with the shown state-
ments on a Likert scale: strongly disagree , disagree , neutral , agree ,
strongly agree .

5.4 Animation Speed
We assume that the speed of the animations has a large effect on the
measured accuracy. All tested animations have the same base duration.
However, we extend the total duration of STA to 250 %. This allows
us to maintain a similar rotation speed while providing extra time for
the staged switch to and from the perspective camera. The TIM
animation gets 200 % of the base runtime to limit the speed of the
sequential animation of each cluster pair.

After the preregistration, we performed a between-subjects pilot
study with a similar setup to the main study but varied the movement
speeds to get a range of base animation times: 0.5, 1, and 2 seconds. We
had five participants for each condition but did not analyze the actual
accuracy data to avoid researcher bias in the main study. Instead, we
compared their subjective feedback regarding the animation speed (“the
animation was not too fast”). Figure 7a shows the results. The variant
with 1 second is best suited to find significant differences between the
animations because it has similar agreeing and disagreeing scores. If
all participants perceived the speed to be well within their limits, they
could trace most data points’ paths perfectly. For too low scores, the
selected point positions might be random.

5.5 Data Set Size
As mentioned in Sec. 5.2, dot density and overdraw might have a con-
founding effect and are related to the number of points in the visualized
data set. We argue that an overall rise of dot density has only little
effect on cluster tasks but might present a crucial factor for tracing a
single point. Thus, for ecological validity, it is sufficient to examine
varying data set sizes for point tracing only.

After the preregistration, we performed a between-subjects pilot
study with a similar setup to the point task in the main study but varied
the size of the auto-mpg data set used in the plots through random
sampling and augmentation: 196 points (50 %), the original 392 points
(100 %), and 786 points (200 %). The resulting data sets were similar
in visual appearance and shape, varying mostly in point density. To get
comparable results, we used the same target dots as in the main study
and ensured their availability across all conditions.

We had 20 participants for each condition and compared subjec-
tive feedback regarding the ease of the task instead of the actual task
accuracy to avoid researcher bias. Figure 7b shows that participant
ratings yielded very similar results across all conditions. While the
point tracing task is rated as challenging, the different dot counts have
no statistically significant effect on the perceived task difficulty [40].

Previous perceptual studies inferred difficulty from dot density and
overdraw around individual points [7, 10] but had lower overall dot
counts than the data sets in our pilot study. The subjective feedback
from our 60 participants suggests that the random selection of target
dots is sufficient to control for task difficulty. We argue that despite
low subjective ease, the chosen auto-mpg data set with 392 points is
a realistic fit for our main goal of evaluating animated transitions in

the context of visual analytics and that the task difficulty might reach
saturation as the dot count increases.

5.6 Power Analysis
Prior to preregistration, we performed a power analysis with G*Power
3.1 [17]. We did not know the shape of the distributions of the mea-
surements a priori. Therefore, we chose a Wilcoxon signed-rank test
for the power analysis of both the point and cluster tasks: A medium
effect size (dz = 0.3) yielded a sample size of 170 participants. The
Likert scales in the questionnaires require an analysis with χ2 tests of
independence. Power analysis for an effect size of w = 0.3 resulted in
a sample size of 207 participants. We chose to go forward with only
170 participants and accept the altered effect size of w = 0.331 for the
χ2 test. Detailed reports from the power analysis are included in the
supplemental material [40]. The assumed statistical tests for the power
analysis correspond to the actually performed tests reported in Sec. 6.

5.7 Participant Recruitment
We crowdsource participants for our 50-minute study on Amazon Me-
chanical Turk [1] and Prolific [33]. They earn approximately 12 EUR
per hour. We ensure at most one submission from each participant on
each platform. Of all participants, 89 are male, 80 female, and one
reported “other or prefer not to say.” The median age is 30 years, with a
standard deviation of 9.19 (recorded in intervals of 10 years). Our data
also includes self-reports on a Likert scale (–2 to 2) about familiarity
(Mn = 0.31, SD = 1.21, Mdn = 1) and regular use of scatter plots
(Mn =−0.78, SD = 1.05, Mdn =−1).

We employ attention tests to ensure high data quality (see Sec. 6.1).
To comply with Prolific’s policy for attention checks, we extend each
animation-targeted questionnaire with nonsensical items (see supple-
mental material [40] for examples). When participants arrive at our
website, they get a study description and a copy of our data policy.
They may only continue with the study if they consent to the policy. We
ask site visitors not to participate if they do not meet the requirements
of (1) normal or corrected to normal vision, (2) no motor impairment,
and (3) a computer in a desktop configuration with a pixel-accurate
pointing device. In the second step, the participants adjust the scale
of the study interface to ensure comparably sized scatter plots across
all displays.

6 RESULTS

In this section, we evaluate various aspects of the collected data accord-
ing to the hypotheses from Sec. 4. We perform various statistical tests
and report the results. Shapiro-Wilk tests showed that the recorded
study data is mostly not normally distributed. Therefore, we mainly use
Wilcoxon rank sum tests, as already assumed in the power analysis in
Sec. 5.6. Because we inspect the data with regards to different aspects
for each hypothesis, we use and report Bonferroni correction. In the in-
terest of brevity, not all results are included in this section. We refer the
interested reader to the supplemental material [40], which contains the
underlying data, all results of the statistical tests, and plots for analysis.

6.1 Exclusion Criteria
In addition to platform-based rejections (see Sec. 5.7), we ensure high
data quality by including two trivial tasks for each animation and
task (24 per participant). In these, the highlighted elements are well
separated from the others and have restricted movement during the
animation. We exclude data from participants if less than half their
answers to point checks are within a radius of 0.1 on the normalized
scatter plot axes (0 to 1). Humans are fallible. Hence, if the regular task
results are too accurate, we assume that the study participant tampered
with the website or introduced some kind of automation instead of
clicking manually. The threshold for exclusion is a mean offset from the
actual dot position of less than one pixel over all point tasks. We remove
submissions with trivial cluster task checks that achieve less than 50 %
correct responses. Additionally, we reject submissions that took less
time than all animations combined. We replace rejected submissions
by recruiting more participants to ensure precisely 170 samples.
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Fig. 9: Distribution of correctly identified cluster interactions. A higher
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6.2 Point Task Accuracy

We measure the distance between the indicated position and the actual
dot within the normalized scatter plot axes [0,1] to determine how well
each animation facilitates tracing data points. We split our investigation
of hypothesis HP into multiple aspects.

First, we analyze each animation against every other, using Bon-
ferroni correction. Shapiro-Wilk normality tests indicate that the dis-
tributions for STR, TIM, and ORT are not sufficiently close
to normal. Therefore, we use Wilcoxon signed-rank tests to compare
individual animations. Tables 1 and 2 in the supplemental material [40]
show an overview of the results.

We aggregate the study data by animation type to compare spline-
based and rotation-based animations (see Fig. 8). The aggregation
maintains 170 samples because we get one value from the mean posi-
tional error across all rotation transitions and one value across all spline
transitions for each participant. The task accuracy with rotation-based
animation was better (Mdn = 0.264) than with splines (Mdn = 0.298).
An exact Wilcoxon signed-rank test showed that this difference was
statistically significant (p ≪ 0.0001, W = 12,536). The rank biserial
correlation coefficient rc = 0.725 shows a large effect size.

6.3 Cluster Task Accuracy

We use the percentage of correctly identified cluster interactions to
compare the animations concerning the traceability of clusters. The
overall mean task accuracy was 84.5 %. First, we perform a pairwise
analysis of the task accuracy between the six animations. Wilcoxon
signed-rank tests with continuity correction (there were ties) did not
show significant results (see Table 3 in the supplemental material [40]).

In addition to analyzing individual pairs, we also compare the an-
imations grouped by type (see Fig. 9). Just as with the point task,
our averaging method ensures that there are 170 pairs of values (rota-
tion vs. spline for each participant). The task accuracy with rotation-
based animation was slightly better (Mdn = 91.6 %) than with splines
(Mdn = 87.5 %). A Wilcoxon signed-rank test with continuity correc-
tion did not provide evidence for statistical significance (p = 0.2574,
W = 4,328.5, z =−1.12, r =−0.086). The mean task accuracy of ro-
tation (Mn= 0.847, SD= 0.158) and spline (Mn= 0.843, SD= 0.134)
animations was similar.
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Fig. 10: Distribution of point task accuracy with 2D transitions for each
direction. Smaller error values are better. The upper diagram shows
the data from the main study with 170 participants. We recorded the
data for the lower diagram in a smaller study with switched axes and 30
participants.

6.4 Animation Direction
For 1D transitions, the accuracy of the point task was lower with
animation in the horizontal direction (Mdn = 0.3994) than in the ver-
tical direction (Mdn = 0.2682). A Wilcoxon signed-rank exact test
showed that this difference was statistically significant (p ≪ 0.0001,
W = 14,510, rc = 0.997). The pairwise tests between all animations
and with Bonferroni correction were also statistically significant (see
Table 4 in the supplemental material [40]).

There was no significant difference in the overall accuracy for the
cluster task with 1D transitions. However, for BUN splines, the
horizontal accuracy was better than with vertical transitions (pseudo
Mdn = +0.3333). A Wilcoxon signed-rank test with continuity
correction showed that this difference was statistically significant
(p = 0.0047, W = 1,044). The rank biserial correlation coefficient
indicated a medium effect size (rc = 0.471). For TIM, the hori-
zontal accuracy was, once more, worse than in the vertical direction
(pseudo Mdn =−0.3333). A Wilcoxon signed-rank test with continu-
ity correction showed that this difference was statistically significant
(p ≪ 0.0001, W = 641). The rank biserial correlation coefficient indi-
cated a large effect size (rc =−0.585).

Directions in 2D transitions differ from the ones available in one
dimension. Rotation-based animations can run horizontal first (hf),
then vertical, as well as vertical first (vf), then horizontal. Spline-
based animations always use both (bo) directions simultaneously. For
the point task, Fig. 10a shows large differences in accuracy. The
error of the point task with 2D transitions was greater in hf direction
(Mdn = 0.2190) than in vf (Mdn = 0.1576). A Wilcoxon signed-rank
exact test showed that this difference was statistically significant (p ≪
0.0001, W = 12,380, rc = 0.703). The error of the point task with 2D
transitions was less in hf direction (Mdn = 0.2190) than in bo (Mdn =
0.2646). A Wilcoxon signed-rank exact test showed that this difference
was statistically significant (p ≪ 0.0001, W = 3,089, rc = −0.575).
There were no significant differences for the cluster task.

We were surprised by the strong effects of the direction of transitions.
They might be linked to the point distributions in the underlying data
dimensions. The random selection (see Sec. 5.2) could lead to the
uneven use of dimensions with few unique values. Therefore, we
repeated the point task with 30 additional participants in a smaller
follow-up study. In this new study, we reused the previous selection
of data dimensions but switched their roles as x-axis and y-axis for
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Fig. 11: Subjective feedback from study participants to the statements
from Sec. 5.2. Responses are given on a Likert scale:
strongly disagree , disagree , neutral , agree , strongly agree .

the plots. The change resulted in an automatic mirroring of animation
directions.

In the follow-up study, the errors in the 1D point task were lower
with horizontal (Mdn = 0.2834) than with vertical (Mdn = 0.3738)
transitions. A Wilcoxon signed-rank exact test showed that the dif-
ference was statistically significant (p ≪ 0.0001, W = 0, rc = −1).
For the point task with 2D transitions (see Fig. 10b), the error in hf
direction (Mdn = 0.1458) was lower than in vf (Mdn = 0.1875). A
Wilcoxon signed-rank exact test confirmed that the difference was sta-
tistically significant (p = 0.01367, W = 114, rc = −0.510). Again,
animation in vf direction (Mdn = 0.1875) was less error-prone than
in bo direction (Mdn = 0.2529). A Wilcoxon signed-rank exact test
confirmed that the difference was statistically significant (p = 0.0003,
W = 67, rc =−0.712). Therefore, the simultaneous animation in both
directions performed worst in the main study and the follow-up.

6.5 Subjective Rating
To compare the animations with regard to subjective feedback from par-
ticipants, we asked for the study participants’ agreement with specific
statements using a Likert scale (–2 to 2, see Sec. 5.2). Figure 11 shows
the combined results. Since we work with ordinal data, we employ χ2

tests of independence. However, to calculate mean values, we use the
numeric representation of the Likert scale.

We asked whether they found it easy to trace the points and clus-
ters. Overall, the participants responded neutrally (Mn = 0.064, SD =
1.265). Transitions were reported to be easier for the point task with

STR (Mn = −0.2, SD = 1.224) than with BUN (Mn = −0.665,
SD = 1.221). A χ2 test of independence showed that there is a sig-
nificant relationship between the variables of animation ( STR vs.

BUN) and participant rating (χ2(4,170) = 17.085, p = 0.0019).
This is the only significant difference between the rated ease of trac-
ing points or clusters with different animations (see Table 5 in the
supplemental material [40]).

After each point and cluster task, we asked the participants whether
they would like to use the animation more frequently. Overall, the
responses were neutral (Mn = −0.035, SD = 1.210). Participants re-
ported preferring animations with STR (Mn =−0.171, SD = 1.167)
over BUN (Mn = −0.653, SD = 1.078) for the point task. A χ2

test of independence showed that there is a significant relationship
between the variables of animation ( STR vs. BUN) and participant
rating (χ2(4,170) = 18.052, p = 0.0012). This is the only significant
difference between the preferences for animations for tracing points or
clusters (see Table 6 in the supplemental material [40]).

In Sec. 5.4, we reported on a pilot study that we used to find an
animation speed toward which participants were neutral. The main
study also asks to rate the agreement with “the animation was not

too fast” after each point and cluster task. Overall, the responses were
neutral (Mn= 0.313, SD= 1.137). Participants reported with statistical
significance that animations with TIM were generally too fast for the
point task (see Table 7 in the supplemental material [40]). There were
no significant differences for the cluster task.

7 DISCUSSION

With the results from Sec. 6, we can now revisit the hypotheses
from Sec. 4.

Significant Differences in Point Task Accuracy
Hypothesis HP about point task accuracy is confirmed. It holds

for individual pairs of animations but also when we aggregate spline-
based and rotation-based transitions. We use the differences in
(pseudo)median errors to create a ranking of animations: 1. ORT,

STA; 2. PER, STR, BUN; 3. TIM. Ranks are shared
when there is no statistical significance between items. However, we
still list the animations within each rank according to their pairwise
difference in (pseudo)medians. The aggregated results also indicate
that the transition type affects the error rate: 1. rotations; 2. splines.
We are surprised that the more complex rotations perform better than
the simple straight-line animations—even in 1D. It might be interesting
to investigate possible causes in further studies.

Bonferroni correction is very conservative with regard to type I
errors and quickly decreases the threshold for statistical significance.
Without this correction, the difference in task accuracy between BUN
vs. PER and TIM (see Table 1 in the supplemental material [40])
would have been marked as significant. The resulting hypothetical rank-
ing would have been 1. ORT, STA; 2. PER, STR; 3. BUN;
4. TIM. However, without further dedicated studies, we cannot as-
sume these hypothetical results to be significant.

No Significant Differences in Cluster Task Accuracy
There is no evidence to confirm hypothesis HC about accuracy

differences in the cluster task. We found no significant results between
individual pairs of animations. Even when we aggregated the data
by transition type (rotation vs. spline), the results were significant,
but the effect size was below small levels (|r| = 0.086 < 0.1). In
general, participants identified cluster interactions well (84.5 % correct).
Therefore, scatter plots with animated transitions might provide an
intuitive alternative to more complex visualization techniques for cluster
interactions.

We suspect that we encountered a ceiling effect [46] because—with
the same animation speed—clusters are easier to trace than points
because the groups of dots might merge to a single perceptual entity
during movement. It might be necessary to adjust the animation timing
or investigate further methods to avoid the ceiling effect [11] and to
find significant differences.

In practice, however, it is improbable that the transition speeds be-
tween scatter plots vary case-by-case, depending on the user’s task. The
analyst would have to change settings manually before each animation,
or the visual analytics software would need to detect the user’s task and
intent autonomously. The latter is an active field of research [19, 21],
but, at the time of writing, we are not aware of robust solutions that
would not lead to user irritation due to wrongly deduced animation
speeds. Therefore, we argue that an ecologically valid comparison of
individual animations and transition types requires the same speed for
all tasks.

Possibly Significant Differences Depending on Animation Direction
Following the results from the main study, we have to reject hypoth-

esis HD. Nevertheless, we suspect that the differences in task accuracy
between animation directions are primarily due to a combination of
the data set and a “randomly bad” selection of the underlying data di-
mensions for display in the scatter plots. A small follow-up study with
switched x-axis and y-axis shows an inversion of the results regarding
the differences between horizontal and vertical directions in both 1D
and 2D transitions. The effect sizes rc from both studies are roughly
the same in the case of 1D view changes (0.997≈1) and both large
for two dimensions (0.703 and 0.51). The difference in 2D transitions
might be a real effect, or it might be a result of uncertainty due to
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the small sample size in the follow-up study. The task accuracy was
consistently worst when altering both axes simultaneously. Further re-
search is required to determine whether this is caused by an increase in
cognitive or perceptual load or is due to the generally inferior results of
spline-based transitions for the point task. The primary goal of the main
study is to evaluate the various animations, not directions. Please note
that the analysis of the presented animations is not affected by possible
horizontal or vertical effects because we used the same combinations
of start and end views for all transitions.
Participants Prefer Straight Animation Paths

For hypothesis HR, we asked participants to state their agreement
with the given statements. Regarding individual animations, there were
mostly no significant differences between the agreement of participants
with “the paths of individual points / clusters are easy to follow” and
“I would like to use this animation frequently.” We can confirm HR
concerning the direct comparison between STR and BUN lines
(preference toward the former) for animation in the point task. The
results for both statements—ease and preference—yield a ranking
where BUN is probably last.

Hypothetically, without the restrictive Bonferroni correction, TIM
would share the last rank with BUN. We can confirm HR in con-
nection with a reportedly short playtime for the TIM animation (last
rank). Without Bonferroni correction, we would have a second-to-last
rank for BUN. We cannot accept these hypothetical significance
values with certainty. However, they give an indication for evaluations
of interest for follow-up studies.
Worse Feedback for Animations That Highlight Clusters

Both animation techniques that we designed to highlight clusters
were ranked worse. We suspect this might be due to potentially faster
dot movements with TIM and more overdraw from higher proximity
with BUN.

Note that the objectively measured error in point tracing shows sig-
nificant differences between animations, but the subjective rating does
not. We suspect that humans might not estimate well how good they are
at visually tracking an object when there are multiple distractors. We
did not provide feedback to the participant about the positional error
to avoid learning effects—remember that we used the same marked
points and data dimensions with all animations for better comparability.
We speculate that there might be a connection to the results of the
study by Robertson et al. [36], where participants liked interacting with
animations independently of accuracy. Further analyses, however, are
outside of the scope of this paper.
Base Animation Time of 1 Second is Sufficient

The overall results from the main study confirm the findings of
the pilot study: we chose the animation time so that, on average, the
participants found the dot movements neither too quick nor too slow.
This resulted in a base animation time of 1 second, which was suffi-
cient for participants to effectively track individual points and cluster
interactions alike. We recommend this duration as a sensible default
and encourage the use of animation in visual analytics software that
provides ways of switching between different scatter plots of the same
data set, e.g., via SPLOMs. To accommodate a wider range of users
and their preferences, animation should not be mandated.
Recommendation for Orthographic Rotation

In real-world applications, users are limited by hard tasks, not by
trivial ones. Since participants solved the cluster task mostly correctly
with all animations, the point task is decisive for the evaluation of
the animated transitions. We recommend the use of orthographic
rotation based on the ranking from the accuracy of tracing points.

Staged rotation, implemented to resemble the animation from related
work [16], shares the first rank but requires a longer playtime due to
the three sequential stages. Our recommendation is in accordance with
the subjective user preference, which was only directed against BUN
and TIM lines.

8 LIMITATIONS

After conducting the study and analyzing the results, we noticed limi-
tations of the study design. We regard a common animation speed for

the point tracing and the cluster interaction task as being realistic for
currently available visual analytics software. For research purposes,
however, it could have been more interesting to investigate independent
animation times in order to get more diverse results for the simpler
cluster task. We suspect that a speed setting that yields a ratio of correct
answers around 50 % could be better suited to find significant results
when comparing different animation techniques for cluster interactions.

The results from the main study indicate a large effect from the
animation direction. In fact, it seems much larger than related work
would suggest. Data from the follow-up study did provide evidence
against such a large effect but was not able to confirm or reject our
initial hypothesis HD. Our primary goal was not the comparison of
directions but of the animation techniques. This is reflected in the study
design. To definitively answer HD, it would be necessary to record
samples for both the original combinations of data dimension as well
as the x-y-switched variants. We opted against such a design to get
higher-quality data for the comparison of animation techniques. We
argue that it would have been counter-productive to pursue more goals
because the study duration was already 50 minutes. A study time of
100 minutes (double each task) could present a higher threshold for
recruiting crowdworkers and might lead to high degrees of fatigue in
participants. While the presented scatter plots were small, we allowed
data points to appear outside the plot bound during the animation. In
practice, not all use cases provide unused space around the scatter plot,
e.g., on mobile devices.

9 CONCLUSION

We developed a framework for animated transitions between scatter
plots of different dimensions from the same data set. We implemented
various animations and provided an open-source D3.js plug-in. We
designed, preregistered, and conducted a crowdsourced user study with
170 participants to evaluate the different transitions. The results show
that rotation-based animation outperforms its spline-based counterpart.

Orthographic and staged rotation worked best to allow participants
to trace individual data points across transitions. Note, however, that
staging requires more runtime. Cluster-centric approaches of spline-
based animation did not work well for the point task. All transitions
resulted in good and similar accuracy for the cluster interaction task.

Based on these results, we encourage using animated transitions
between different views of the same underlying data set. With only a
small impact on time, they provide effective ways to trace individual
points and clusters. As a result, analysts can make more effective use
of point-based visualization in scatter plots without using additional
visual attributes for correspondence. Animation seems to be an in-
tuitive approach because participants were able to follow the target
elements across changing data dimensions without requiring lengthy
training or extensive experience in the field. More experienced data
analysts could benefit from correspondence through animation when
transitioning between actual data dimensions and the abstract results
from dimensionality reduction.

Future research might identify and quantify effects from the direction
of animated transitions. We required participants of our study to use
desktop-like computer setups, but it would be interesting to reevaluate
the task accuracy with animations on smaller and moving displays.
Further research could explore transitions that account for more than
two scatter plots (supported in our framework through intermediate
views and control points for splines). A follow-up study could avoid
the ceiling effect in the cluster task and compare the accuracy between
both tasks. Future work might look into how data correlations can
be tracked across animated transitions of scatter plots and how our
recommendation for more animation could be applied to other types of
visualization. Similarly to the grand tour [3], one might also provide
overview videos of the data set with sequences of dimension pairs that
are optimized for the specific animations.
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