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Abstract
Recently, neural networks have gained attention for creating parametric and invertible multidimensional data projections.
Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while
invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously
for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible
projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the
original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern
complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and
inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.

CCS Concepts
• Human-centered computing → Visualization; • Computing methodologies → Machine learning;

1. Introduction

Multidimensional projections, also known as dimensionality reduc-
tion (DR) methods, are well-established and frequently used to
analyze high-dimensional data visually [Jol86]. DR methods reduce
high-dimensional data to a lower-dimensional projection, usually
to 2D or 3D, while trying to preserve relationships, i.e., distances
and neighborhoods [NA19]. A shortcoming of these approaches is
that the result can be hard to interpret since the relationships are
projected non-linearly. To address this, researchers proposed to en-
hance the visualization through layout enrichments, showing the
distortions and gradients between projected points [NA19; EAS*21;
DMKE24]. However, we argue that these methods benefit from
projections that are parametric and invertible. (1) Parametric meth-
ods use a model with learnable parameters to control the mapping
between high- and low-dimensional spaces. Doing so allows the
projection of new data points, real and synthetic, without recalculat-
ing all pairwise relationships. This is faster and keeps the projection
stable [SMG21]. (2) Invertible methods have a smooth mapping
from the projection space back to the original high-dimensional
space, allowing us to generate new data from any arbitrary posi-
tion of the projection [vWvO03], e.g., for interactive counterfactual
generation [SRK24]. However, DR methods, such as t-SNE [vd-
Maa09], are generally not parametric or invertible. In recent years,
neural networks (NNs) have been used to learn mappings from
high-dimensional space to the projection space [EHT20], and vice
versa [EAS*21; HHKS23]. However, while these approaches can be
applied to arbitrary projections, they only consider each mapping di-

rection individually. In this work, we explore and evaluate different
autoencoders (AEs) [BKG23] to support parametric mapping and
inversion jointly through their encoder-decoder architecture. More
specifically, we compare the individual feed-forward NNs proposed
by Espadoto et al. [EAS*21] and Hinterreiter et al. [AEC*22] with
standard AEs and variational AEs with custom loss functions for
representing the projection space in the latent space. We measure
their ability to parametrically project and inverse project data points
and compare them qualitatively by visually assessing their outputs.
Additionally, we analyze the smoothness of the projection through
gradient maps. Overall, we contribute the following:

(1) We propose three AE-based NN architectures for creating para-
metric and invertible projections.

(2) We perform an evaluation comparing the three architectures
quantitatively and qualitatively on four datasets using t-SNE.

(3) For reproducibility, we provide the analysis, results and source
code at https://osf.io/r2yqd.

With this work, we aim to enhance high-dimensional data analysis
by improving the interpretation and explainability of DR methods.

2. Related Work on Multidimensional Projections

Let D = {xi}1≤i≤n be a high-dimensional dataset with d dimension
and n samples xi ∈ Rd . A projection method P maps D to P(D) =
{P(xi)|xi ∈ D} = {yi}1≤i≤n, where P(D) ⊂ Rq with q ≪ d. For
our case, q = 2; thus, P(D) can be visualized in a 2-dimensional
scatterplot. Projection methods have been extensively studied and
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assessed in several surveys [Yin07; CG15; EMK*19; NA19]. They
can be classified into linear and non-linear methods [LMW*17;
EMK*19]. Additionally, they either preserve global structure or
local neighborhoods. Linear projection methods like PCA [Jol86]
can be computed very efficiently and preserve the global structure
of the data. MDS [Kru78] is an example of a global, non-linear
projection method. There exist many non-linear methods that put
stronger weight on preserving local neighborhood structures at the
expense of global structure fidelity. Such methods include t-SNE
[vdMH08] or UMAP [MHM18]. Autoencoder-based approaches
generally also fall into this category [WYZ16].

Parametric Projections Methods: Standard non-linear DR meth-
ods [Kru78; vdMH08; MHM18] are non-parametric, needing com-
plete recalculation when projecting new data points [HHKS23].
Parametric approaches [BBH12] address this limitation, e.g., by
using NNs to learn mapping functions into lower-dimensional
space [HS06; vdMaa09]. Van der Maaten [vdMaa09] used a feed-
forward NN to build parametric t-SNE. Similarly, parametric UMAP
[SMG21] uses NNs, including autoencoders, designed to replace
the non-parametric embedding step. By training NNs to infer 2D
coordinates for input domain data points, Espadoto et al. [EHT20]
showed that NNs with sufficient size can effectively approximate
many existing non-parametric methods. HyperNP [AEC*22] uses
NNs to approximate projection techniques across hyperparameters
(e.g., perplexity for t-SNE), allowing for their interactive explo-
ration. ParaDime [HHKS23] streamlines the creation of NN-based
DR approaches by proposing a grammar specific to parametric DR.

Inverse Projections: Inverse projections are functions P−1 : Rq →
Rd which are smooth and minimize the cost ∑x∈D ∥P−1(P(x))−x∥
with projection P and ∥ · ∥ denoting the L2 norm. Only a handful of
projections are inherently inversely defined, e.g., UMAP [MHM18].
An inverse mapping is not explicitly available for most other projec-
tion methods, requiring alternative methods, such as NNs [EAS*21].
One of the early methods introduced a global interpolation-based
technique to generate new data points [vWvO03]. Later, iLAMP
[dSBI*12], which builds on LAMP [JCC*11], addresses inverse
projection by focusing on preserving local relationships. Amorim
et al. [ABM*15] later refined this by using a radial basis function
kernel for interpolation. Blumberg et al. [BWT*24] invert MDS pro-
jections by leveraging geometrical relationships between data points
through multilateration. Recently, deep learning was employed for
creating inverse projections. The feed-forward NNs proposed by
Espadoto et al. [EAS*21] learn the mapping from the projection
space back to the high-dimensional space.

3. Training Autoencoders for Multidimensional Projections

We train AEs to jointly create a parametric projection P and inverse
projection P−1. AEs are a class of NNs designed for unsupervised
learning of efficient data representations [BKG23]. AEs were al-
ready well-established in the context of DR [HS06]. However, a stan-
dard AE will learn a latent space representation optimized for data
compression and feature extraction. Thus, modified loss functions
were proposed to impose a structure on the latent space of an AE,
e.g., SSNP [EHT21] and ShaRP [MTB24] integrate pseudo-labels
from clustering into their loss functions. However, these approaches
do not allow for inverting arbitrary user-defined projections.

Figure 1: The
encoder of the AE
learns the paramet-
ric projection P
mapping new data
record xi into 2D
space (as ŷi). The
decoder learns the
inverse projection
P−1 generating a
high-dimensional
sample x̂i from any
2D point yi.

An AE consists of an encoder and a decoder (Fig. 1). The en-
coder Enc : Rd → Rq learns a mapping from the high-dimensional
input space into a lower-dimensional latent space Ŷ = {ŷi}N

i=1,
with ŷi = Enc(xi) ∈ Rq and N data points. In contrast, the decoder
Dec : Rq → Rd aims to map these latent representations back into
the original input space x̂i = Dec(yi) ∈ Rd . A standard AE aims
to learn a compressed latent encoding yi while reconstructing the
input xi as accurately as possible. During training, we feed the
input xi forward through the encoder and decoder to obtain a re-
construction x̂i, then compute a reconstruction loss, i.e., end-to-end.
A common choice for this loss is the mean squared error (MSE)
Lrec(xi, x̂i) = MSE(xi, x̂i) := ∥xi − x̂i∥2. This error is backpropa-
gated through the AE, and its parameters are updated accordingly.
We use modern training methods for deep AEs, including batches
of data and stochastic gradient descent [KB15]. We use standard
loss functions, like the mean squared error (MSE) and the Kullback-
Leibler divergence (DKL), a measure of the difference of two proba-
bility distributions A and B. In the following paragraph, we describe
our proposed NN architectures.

Individual Projector and Reconstructor
(P&R): We train two standard feed-forward
NNs to combine the approaches by Hin-
terreiter et al. [AEC*22] (denoted as P)
and Espadoto et al. [EAS*21] (denoted
as P−1). This structure is, strictly speak-
ing, not an AE but provides a baseline
for our experiments. We train a projec-
tor network learning the parametric projec-
tion P, enabling the addition of new data
to the projection through its loss function
Lpro(x, ŷ) = MSE(P(x), ŷ). Independently, we train a reconstructor
network learning to invert the projection space via the loss func-
tion Lrec(y, x̂) = MSE(P−1(y), x̂). During training, P and P−1 are
learned by the individual networks, projecting and reconstructing
the dataset, i.e., P(x) = y and P−1(y) = x.

Autoencoder with La-
tent Loss Term (AEL):
To avoid potential projec-
tion and reconstruction ar-
tifacts caused by training
individual networks, we
propose using AEs. In AEs, the encoder and decoder are trained
jointly as one NN. The encoder of the AE learns to project the data
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(a) α = 0.01 (b) α = 0.1 (c) α = 0.2 (d) α = 0.3

Figure 2: The effect of α on the parametric projection of VAEL
using a t-SNE projection of MNIST. β is set to 1.0 in all examples.

points, while the decoder learns the inverse projection. To impose a
structure on the latent space, we define the loss:

LAEL(x, x̂, ŷ) = MSE(x, x̂)+ω ·MSE(y, ŷ) (1)

Here, the MSE(x, x̂) denotes the reconstruction loss. To enable the
AE to learn a given projection, we modify its loss function by adding
a component ω ·MSE(y, ŷ) to force its latent space to conform. The
weight ω ∈ R+ determines the strength of the latent space to con-
form to the projection, i.e., between the projection and reconstruc-
tion quality. We performed a parameter scan (see supplementary
material) and determined that ω = 0.5 archives a generally low MSE
for test data. We discuss the effect of ω in Sec.5.

Variational Autoen-
coder with Latent
Loss Term (VAEL):
Instead of directly pre-
dicting the latent vari-
able ŷ, the encoder pre-
dicts the parameters of the normal distribution µ and σ

2. In training,
ŷ is sampled from a 2D normal distribution, i.e., ŷ ∼N (µ,σ2) with
ŷ, µ, σ

2 ∈ Rq. The VAE is still trained end-to-end, using the repa-
rameterization trick, to backpropagate through the sampling oper-
ation [KW14]. For our VAEL, we incorporate the evidence lower
bound loss (ELBO) used for VAE training as:

LVAEL(x, x̂,y,µ,σ
2) = MSE(x, x̂)+α ·MSE(y, ŷ ∼N (µ,σ2))

+β ·DKL(N (µ,σ2) || N (0,1))
(2)

We follow the framework of the β−VAE [HMP*17], which adds
an additional β-parameter to balance conformity to the prior nor-
mal distribution and reconstruction quality. We sampled various
combinations and found that α = 1.0 and β = 0.1 achieve generally
good quality in terms of MSE on test data. The effect of varying
α is shown in Fig.2. We discuss the selection of α and β in Sec.5.
Similar to Chen et al. [CG24], we use µ as a 2D coordinate to create
parametric projections, i.e., for inference only, since it is the mean
and mode of the normal distribution.

3.1. Data Preprocessing and Training

We derive the topologies of our AEs from the configuration of the
NNs proposed by Espadoto et al., and Appleby et al. [EAS*21;
AEC*22]. For P&R, we use these topologies directly; for AEL and
VAEL, we combine the NNs to create a bottleneck according to
our descriptions. Using the Adam optimizer [KB15], we observed
that the training of our AEs converges similarly fast. Thus, we set
the number of training epochs to 50, allowing all to converge. The
learning rate is set to 0.001, and the batch size is set to 32, which are

Dataset d ρd n γn Type
Rings [BWT*24] 3 3 180 0.0% Synthetic
HAR [AGO*12] 561 120 735 0.0% Sensor Data
MNIST [LCB98] 784 330 70000 82.9% Images
Fashion MNIST [XRV17] 784 187 3000 50.2% Images

Table 1: Evaluation datasets with dimensionality d, intrinsic dimen-
sionality ρd, dataset size n, and sparsity γn [EMK*19].

Rings HAR MNIST Fashion MNIST
Average MSE of the Parametric Projection (lower is better)

R&P .119 (.021) .037 (.003) .039 (.001) .027 (.001)
AEL .013 (.005) .041 (.002) .074 (.004) .046 (.003)

VAEL .030 (.010) .047 (.004) .053 (.005) .045 (.003)
Average MSE of the Inverse Projection (lower is better)

R&P .228 (.028) .398 (.005) .720 (.010) .459 (.008)
AEL .033 (.012) .357 (.006) .744 (.052) .525 (.082)

VAEL .118 (.037) .420 (.005) .847 (.048) .556 (.019)

Table 2: Aggregated MSE and standard deviation (in braces) of the
parametric and inverse projections on test data for 10 runs each.

the typical values. We use batch normalization after each layer and
dropout regularization with a probability of 0.25. For all details, refer
to the source code. In our experiments, we standardize the input data
per dimension, i.e., the dataset and the projection. When projecting
or reconstructing data using the encoder or decoder, we apply the
inverse of the standardization to the output, enabling us to recover
the representation in the original space and the projection space,
respectively. This is possible since standardization is an invertible
linear transformation due to σ

2 ∈ R+.

4. Evaluation

We evaluate the approaches quantitatively using the mean squared
error (MSE), the average gradient of the inverse projection, and
runtime measurements. Additionally, we qualitatively compare the
results of the NN architectures by visually comparing parametric
and inverse projections.

Since there is no ground truth for many points ŷ ∈ R2 \P(D),
we use gradient maps [EAS*21] to evaluate the inverse
projection for those points. For each ŷ, we compute a pseudo-
derivative of P−1 measuring the difference between the
horizontal and vertical neighbors of a pixel defined as G(q) =√

∥P−1(ŷle f t)−P−1(ŷright)∥2 +∥P−1(ŷup)−P−1(ŷdown)∥2.
This allows us to visualize the rate of change in the high-
dimensional space and quantitatively assess the inverse projection’s
gradients. We compare the results across four datasets (Tab.1) using
t-SNE with standard parameters [vdMH08] as the ground-truth
projection to be learned.

4.1. Quantitative Comparison

We evaluate the quality of the parametric and inverse projections by
measuring the average MSE of test samples for each inverse method
using an 80/20 train-test split. To minimize the effect of outliers, we
train 10 NNs for each method using different random assignments
of items to the training and test sets. The aggregated MSEs and their
standard deviations are shown in Tab.2.

© 2025 The Authors.
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Figure 3: Gradient maps of the three inverse projection methods for four datasets. Darker colors indicate a low rate of change, and lighter
areas indicate a high rate of change. The numbers show the maximum gradient (bottom left) and average gradient (bottom right).

(a) t-SNE (b) P&R (c) AEL (d) VAEL

Figure 4: Ground truth t-SNE projection of Fashion MNIST (a) and
the parametric projections of test data for the three methods (b–d).

The average MSE of the parametric projection (Tab.2 top) shows
how well the different methods project high-dimensional data points
for a given projection method P, i.e., t-SNE. The P&R applied to
the Rings dataset results in a high average MSE, suggesting that the
projection performs the worst comparatively to the others, while
AEL outperformed the other two. For high-dimensional datasets
(i.e., HAR, MNIST, and Fashion MNIST), AEL and VAEL cannot
outperform P&R. VAEL outperformed AEL in all benchmarks ex-
cept HAR. The average MSE of the inverse projection (Tab.2 bottom)
shows how well the approaches can create a high-dimensional data
point from a 2D point in the projection. AEL outperformed the other
approaches for the Rings and HAR datasets. For Fashion MNIST, it
performed the worst. Comparing P&R with VAEL shows that R&P
generally outperformed VAEL except for the low-dimensional Rings
dataset. The average gradient (Fig. 3 bottom right) measures the
average rate of change of the high-dimensional inverse point when

moving to a neighboring pixel in the 2D projection. The average
gradient increases with the intrinsic dimensionality of the dataset
and generally decreases from R&P to VAEL, suggesting that the
VAEL generally produces smoother gradient maps. Training times
generally increase with the intrinsic dimensionality and size of the
dataset (see supplementary material). R&P requires the longest time
to train, mainly because it involves training two separate networks.
Additionally, the VAEL takes longer to train than the AEL. Overall,
inference times are similar and generally low for all the datasets,
staying between 0.01s and 0.04s for all architectures.

4.2. Qualitative Comparison

We projected all samples in the test set using the learned parametric
projections for the Fashion MNIST dataset (Fig.4). All parametric
projections exhibit the general patterns of the t-SNE projection. P&R
(b) looks similar to the ground truth. The AEL projection (c) looks
more clumpy and stringy than the P&R projection. VAEL (d) results
in slightly fuzzier classes but misses the stringy artifacts in (c). The
observations confirm the quantitative evaluation. We compared the
inverse projection result for data records in the test set of the image
datasets, i.e., MNIST and Fashion MNIST. The results can be ob-
served in the supplementary material. P&R and AEL produce output
that can be assigned to one of the classes in the MNIST and Fashion
MNIST datasets. P&R is more accurate than AEL since it produces
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Figure 5: For each of the three NN architectures, we inverse project 10 samples from an interpolation line of the projection space. Samples are
drawn at equal intervals from an interpolation line in the t-SNE projection of the Fashion MNIST dataset (right).

more images matching the ground truth. VAEL will produce fuzzier-
looking images compared to P&R and AEL. To show how the NNs
handle transitions between multiple classes, we also visualized the
inverse projections of samples of low-dimensional points along an
interpolation line (Fig.5). The samples generated by P&R and AEL
exhibit a generally high fidelity and can be assigned to a class of the
Fashion MNIST dataset. The sample from VAEL marked red is less
sharp, and the sample marked blue shows a shirt and a shadow of
a boot. Thus, VAEL produces smoother gradients while generating
less accurate inverse projections. Finally, we analyze the gradient
maps for the different datasets and NN architectures (Fig. 3). All
approaches create differing gradient maps for the Rings dataset,
with AEL creating the smoothest map. For the other datasets, the
gradient maps show similar patterns, with higher gradients between
clusters and generally lower gradients within clusters. HAR shows
higher gradients on the right edge, while MNIST exhibits a similar
pattern on the left. For the HAR, a high gradient separates the two
left clusters from the right in all maps. For MNIST and Fashion
MNIST, the maps show different gradients separating clusters. P&R
creates smoother gradient maps for the higher-dimensional datasets
than AEL with lower maximum gradients. When comparing the
gradient maps of VAEL for HAR, MNIST, and Fashion MNIST with
the others, we can observe that the approach creates gradients in
similar locations. However, their average gradients are the lowest.
Thus, the inverse projections of VAEL are generally smoother.

5. Discussion and Future Work

The results for P&R show that a feed-forward NN generally works
best for creating a parametric projection. Similarly, P&R outper-
formed AEL and VAEL for generating inverse projections of MNIST
and Fashion MNIST. The architectures of AEL and VEAL are di-
rectly derived from P&R. However, AEL and VEAL may benefit
from additional and larger layers, requiring a validation set to de-
termine their hyperparameters. Our results suggest that the joint
training of P and P−1 using AEs generally yields smoother inverse
projections. In terms of smoothness, VAEL gives the best results
with low average gradients and smaller areas of high gradients
(Fig.3), showing that incorporating the DKL loss term has a smooth-
ing effect. Our evaluation suggests that this effect comes at the cost
of the parametric and inverse projection accuracy. However, the
smoothing strength is controllable through the parameters of VAEL.

Loss Weights ω, α, and β: We determined the values for ω, α,
and β experimentally by calculating the MSE on reconstruction and

latent space for different levels of ω, α, and β (see supplementary
material). For AEL, choosing a lower ω leads to a lower MSE on
inverse projection and a higher MSE on the parametric projection.
We recommend selecting an ω of 0.5 as the values between 0.4
and 5.0 yield similarly low MSEs. For the VAEL, the smaller the
β, the better the weighted sum of MSE on parametric and inverse
projection. In contrast, the weighted sum decreases with larger α. We
chose a β of 0.1 and an α of 1.0 since these weights yield generally
low MSE losses. α can be increased to 5.0 (with β = 0.1), without
negatively affecting the MSE. β is the more sensitive parameter
directly influencing the smoothness of the inverse projection. We
recommend evaluating the β parameter on a case-by-case basis.

Future Work: Our work focused on t-SNE; however, we plan to ex-
tend the evaluation to other projection methods, like UMAP. We also
plan to compare our AE-based architectures to existing parametric
and inverse projection methods. Since we used common datasets
and an 80/20 train-test split, we would like to further test the stability
of each approach w.r.t. amount of training data and intrinsic dimen-
sionality. In our approach, DKL of the VAE serves as an implicit
regularization of the latent space. However, a similar effect could be
achieved with a standard AE using explicit regularization, such as
an L2-regularization of the Jacobian of the latent layer. We adapted
network topologies from previous applications, but we would like
to perform ablation studies to assess the degradation of the pro-
posed architectures. Finally, other NN types could be tested, namely
generative adversarial networks (GANs) or invertible NNs.

6. Conclusion

We evaluated three different AEs for generating parametric and in-
vertible multidimensional data projections. Our qualitative and quan-
titative results for t-SNE showed the differences in projection and
reconstruction capabilities between the tested models. In general, we
found that feed-forward NNs for the projection and reconstruction
of data points generally outperform AE-based approaches in terms
of accuracy. However, AEs can produce comparable results while
generally producing smoother parametric and inverse projections.
In particular, we found that VAEs with a customized loss function
have the greatest potential for producing smooth inverse projections.
Their parameterization allows for case-by-case fine-tuning between
overall accuracy and smoothness.
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