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FS/DS: A Theoretical Framework for the Dual
Analysis of Feature Space and Data Space

Frederik L. Dennig , Matthias Miller , Daniel A. Keim , and Mennatallah El-Assady

Abstract—With the surge of data-driven analysis techniques, there is a rising demand for enhancing the exploration of large
high-dimensional data by enabling interactions for the joint analysis of features (i.e., dimensions). Such a dual analysis of the feature
space and data space is characterized by three components, (1) a view visualizing feature summaries, (2) a view that visualizes the
data records, and (3) a bidirectional linking of both plots triggered by human interaction in one of both visualizations, e.g., Linking &
Brushing. Dual analysis approaches span many domains, e.g., medicine, crime analysis, and biology. The proposed solutions
encapsulate various techniques, such as feature selection or statistical analysis. However, each approach establishes a new definition
of dual analysis. To address this gap, we systematically reviewed published dual analysis methods to investigate and formalize the key
elements, such as the techniques used to visualize the feature space and data space, as well as the interaction between both spaces.
From the information elicited during our review, we propose a unified theoretical framework for dual analysis, encompassing all existing
approaches extending the field. We apply our proposed formalization describing the interactions between each component and relate
them to the addressed tasks. Additionally, we categorize the existing approaches using our framework and derive future research
directions to advance dual analysis by including state-of-the-art visual analysis techniques to improve data exploration.

Index Terms—Visual analytics, dual analysis, feature space, data space, feature exploration, mixed data, high-dimensional data

✦

1 INTRODUCTION

ONE of the major challenges faced by data analysts
when exploring and analyzing collected data is the

detection of interesting patterns and relationships among
data items and features (i.e., dimensions). This is due to
multiple reasons. Firstly, the sheer size of the datasets, and
secondly, the complexity of patterns that analysts are facing
during the investigation. A popular way to explore large
high-dimensional datasets is dual analysis. Dual analysis
is a technique first introduced by Turkay et al. [1] for the
analysis of DNA microarrays. This first instantiation en-
abled users to perform correlation exploration and hypothe-
sis generation utilizing interactive visual analysis. Turkay
et al.’s approach employed three key components: (1) A
view visualizing summaries of features, i.e., scatterplots of
summary statistics, (2) a view that visualizes the data points,
here, a projection based on Principal Component Analysis
(PCA) [2], and (3) a bidirectional linkage of both visualiza-
tions, in this case, through Linking & Brushing. With those
three components, dual analysis allows for simultaneous
visual investigation and manipulation of features and data
items (Fig. 1). In recent years, approaches solved problems
in other domains, such as medicine [3], [4], [5], [6], [7], [8],
crime analysis [9], [10], [11], [12], and finance [12], [13], [14].
Other approaches exchanged the visualizations for feature
and data space, e.g., Parallel Coordinate Plots (PCPs) [15],
and also used different interaction techniques on these vi-
sualizations, such as Drag & Drop interactions [16], [17] or

• Frederik L. Dennig and Matthias Miller are with University of Konstanz,
Germany. E-Mail: first.last@uni-konstanz.de.

• Daniel A. Keim is with University of Konstanz, Germany. E-Mail:
keim@uni-konstanz.de.

• Mennatallah El-Assady is with AI Center, ETH Zürich, Switzerland. E-
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Fig. 1. Dual analysis leverages the interactions on the feature space and
data space by linking the visualizations of both spaces. Both spaces are
tightly coupled, allowing for joint analysis with an immediate response.

subspace selection [7], [9], [10], [13], [14], [18], which neces-
sitates adaptation of the linkage between features and data
space. Implementations using the dual analysis paradigm
are mainly geared toward specific use cases, while only
some are designed for multiple domains.

The strength of dual analysis is that the link between
the feature and data space visualization allows for an im-
mediate response, which in turn allows for a fast hypothesis
generation and validation, ultimately enhancing the knowl-
edge generation process [19]. The visualization of feature
and data space symmetrically leverages the preference of
humans for symmetry [20]. Since the available approaches
are domain-specific, tackling a specific problem, transferring
these approaches to solve new problems in other domains is
non-trivial. Additionally, many previous works popularized
dual analysis for multivariate data analysis, where the data
items and attributes are simultaneously shown in two adja-
cent and symmetric views [1], [17], [21], e.g., two scatterplots
using the same dimensionality reduction technique and in-
teraction for feature and data space. These approaches only
focus on detecting similarities among data items and fea-
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tures, or analyzing the impact of a feature on the topology
of the dataset. Approaches that do not employ a symmetric
design are more flexible. However, the linkage of both
visualizations is less straightforward, since both views have
other benefits and limitations. Additionally, the number of
conceivable combinations is vast. Thus, we provide a formal
model that can help structure the development of new dual
analysis approaches. Generally, dual analysis approaches
lack the capabilities of visual analytics frameworks that em-
ploy more sophisticated techniques. For example, machine
learning tools, such as interesting subspace recommenda-
tion [22] and feature selection algorithms [23], [24], layout
enrichment for scatterplots [25], analytical provenance [26],
and guidance mechanisms [27]. We argue that the introduc-
tion of those techniques into the dual analysis framework
to explore, reduce, and transform the data will improve
its usefulness since these techniques already improve other
visual analytics frameworks. However, the addition of those
algorithms is challenging since dual analysis depends on a
meaningful interplay between the feature and data space
visualizations. Thus, interfaces enabling the integration of
machine-learning techniques need to be well-defined.

A comprehensive overview of existing dual analysis
approaches is missing in the current literature. Thus, we
performed a systematic literature review to get a compre-
hensive and well-grounded understanding of the area. We
present seven scenarios describing ways of applying the
dual analysis approaches in addition to their fundamental
properties, goals, and use cases, including which techniques
have been used to create meaningful feature and data space
visualizations and interactions. One challenge faced for
future applications is that the state of the feature and data
space view need to stay coherent, even with more complex
and sophisticated algorithms and interactions. Thus, our
FS/DS model presents a unified framework incorporating
previously disjunct approaches for dual analysis. Our key
contributions include the following:

• A systematic literature review describing fundamental
properties, goals, and use cases of existing dual anal-
ysis approaches.

• A theoretical model for dual analysis describing the
key components, yielding a formal description of the
design space for dual analysis approaches.

• Validation of our formal framework through descrip-
tive and generative use.

Our contributions enable researchers and developers to
include additional analytical capabilities, such as machine
learning algorithms and visualization techniques. Finally,
we discuss the limitations of our work and present promis-
ing research directions.

2 RELATED WORK

This work is related to previous publications in several
ways: It is concerned with general theoretical models for
visual analytics, specifically proposing one for dual analysis,
and it is related to interaction and task taxonomies. Thus, we
will cover how they relate to dual analysis and what they are
lacking regarding dual analysis interactions. We will briefly
describe how our proposed framework will address these
shortcomings.

2.1 Theoretical Models in Visual Analytics

Before proposing a formal and theoretical framework for
dual analysis, we relate to formal and theoretical models in
Visual Analytics (VA) and information visualization.

Jarke J. van Wijk proposed a formal model for visualiza-
tion [29], which models visualization as a function of data
and its specification. The specification can be changed by the
user based on the knowledge gained after the perception
of the visualization through an exploration process. These
interactions are represented as processes or functions (i.e.,
visualization, perception, and exploration), while the data,
the visualization, and its specification are denoted as param-
eters for the processes. This model was adapted by Green
et al. [28], [30] adding interaction between the perception
and exploration, as well as the exploration and the users’
knowledge. This update highlights that perception directly
impacts exploration, and knowledge is also gained through
exploration and interaction.

Another high-level model for general VA approaches
was published by Keim et al. [31]. It describes the visual ana-
lytics process as characterized via interactions between data,
visualizations, models about data, and the user to discover
knowledge. It defines VA as a combination of automatic and
visual analysis techniques with a tight coupling through
human interactions, with the primary goal of gaining new
insights from data. Thus, the first step in the model is to
transform the data to derive different representations for
subsequent exploration through automatic or visual analy-
sis. This model makes a clear distinction between automatic
and visual analysis and keeps them separated. Also, all
transformations are framed as preprocessing. The model
describes automated analysis as data mining methods that
are used to create models of the data. With these models,
the analyst can evaluate and refine the model by interacting
with the data through visualization. Visualizations can also
allow analysts to parameterize automatic methods. Model
visualizations are described as tools for the evaluation of
the model itself and the validation of the generated find-
ings. The interplay of automatic and visual techniques is a
hallmark of VA. Thus, this model allows for the continuous
refinement and adaption of hypotheses.

An extension of this model is the Knowledge Generation
Model by Sacha et al. [19]. It takes the model by Keim
et al. and extends it with three loops, namely exploration,
verification, and knowledge generation. This model places
these three loops in the domain of the users, while the
model by Keim et al. represents the computation domain.
The exploration loop is described with two steps: Action and
finding. The verification loop with hypothesis and insight.
Most importantly, it describes these steps as nested, e.g.,
a finding can lead to new insights, which can help create
a new hypothesis, which can be tested through an action
using a VA approach. Finally, through the exploration and
verification of the action, the user can gain new knowledge
about the data by verifying the explored hypothesis through
multiple perspectives and insights. Thus, the model by
Sacha et al. focuses on the user rather than the algorithmic
or computer side.

Our work contributes a theoretical and formal frame-
work for the dual analysis of feature and data space. One
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of the benefits of formalization is the systematization of
core operations on the data while describing what tasks are
achievable or not with which techniques, such as visualiza-
tion and interaction techniques. Thus, it provides a more
detailed model by focusing on specific properties of dual
analysis and is designed explicitly to abstract key properties.
Yet, it remains at a high level such that we present our
contribution in a way that corresponds to these existing
models focusing on the core operations.

2.2 Interaction Techniques and Taxonomies

Dual analysis approaches leverage interaction techniques to
enhance opportunities to extract relevant information from
the visual representation of the feature and data space.
Various taxonomies and generic frameworks explore the
design space of visual interaction.

Yi et al. [32] present a framework and taxonomy for
information visualization interaction techniques, which cat-
egorizes lower-level interactions into seven groups, namely
(1) Select: mark something as interesting, (2) Explore: show
something else, (3) Reconfigure: show a different arrange-
ment, (4) Encode: show a different representation, (5) Ab-
stract/Elaborate: show more or less detail, (6) Filter: show
something conditionally, and (7) Connect: show related
items. These categories are focused on the user intent rather
than the users’ low-level actions. For instance, Lekschas et
al. [33] introduced the technique “Interactive Piling” to facil-
itate the visual organization, exploration, and comparison of
numerous small multiple using the pile metaphor to provide
visual aggregations.

The taxonomy by Brehmer and Munzner [34] extends
the ideas by Yi et al. [32]. It describes a multi-level typology
for information visualization tasks. The authors specifically
differentiate the ends (i.e., user intent) from the means (i.e.,
user action), with the primary goal of describing why and
how a task is performed. Additionally, Brehmer and Mun-
zner address the inputs and outputs of a given task to create
a comprehensive taxonomy. It allows for the expression of
complex tasks as sequences of simple, interdependent tasks.
All intents, interactions, inputs, and outputs are described in
an abstract rather than a domain-specific way, allowing for
an application of the taxonomy to a large set of VA systems.
Nonato and Aupetit [25] applied the taxonomy by Brehmer
and Munzner [34] to dimensionality reduction, formalizing
tasks specific for dimensionality reduction.

Landesberger et al. [35] present a new taxonomy for
user interaction in VA applications by comparing existing
interaction taxonomies. This approach covers three high-
level areas, i.e., visualization, reasoning, and data process-
ing. Each area consists of two subcategories, i.e., of data
changes and changes in the respective representation. In this
taxonomy, changes in the data impact the visualized dataset,
and changes in visualizations refer to different forms of
interaction. Changes in the dataset are categorized into two
subcategories. The first reflects changes that impact the
data selection, such as filtering, while the second comprises
changes that affect the dataset, such as editing or annotation.
The visualization changes are subdivided into changes in
the visualization parameters and changes in visualization
type or scheme, as described by Bertini et al. [36].

Fig. 2. Paper Selection Process: 1.) Landmark papers 2.) Forward
and Backward Search 3.) Automated Keyword-based Filtering, 4.) Paper
Filtering, and 5.) Sample Validation. The numbers in the arrows describe
the number of papers retained after each step.

Endert et al. [37] specifically focus on the semantic
interaction, introducing a visual analytics prototype called
FORCESPIRE designed to support diverse forms of semantic
interaction. They propose a new design space for interaction
in visual analytics, enabling analysts to interact with a visual
metaphor leveraging interactions derived from the analytic
process, such as searching, repositioning, or highlighting.

Dimara and Perin [38] published a paper about the
general concept of interaction for data visualization provid-
ing a clear definition that helps to improve understanding
of the opportunities that interaction opens to users. Their
evaluation identified several crucial factors, such as the
computer being a mediator between humans and data,
the visualization should invite users to construct a mental
model of data concepts, and there can be different intents
of why visualization is used at play. Thus, they argue that
interaction allows for iterative steps to approach an analysis
goal by supporting user intentions while maintaining a high
level of flexibility in an application.

Our framework for dual analysis covers interaction in
its design by linking them to common analysis scenarios,
which internally are connected to a step in the data pro-
cessing pipeline. Thus, it provides a detailed description of
possible interactions linking them to the underlying compo-
nents facilitating dual analysis.

3 LITERATURE SURVEY

At the outset of this literature review, we present our defi-
nition of dual analysis that we use throughout this work.

Defintion of Dual Analysis: Dual analysis facilitates the
joint visual analysis of feature and data space through (1)
a view visualizing the features (i.e., feature space), (2) a
view that shows data points (i.e., data space), and (3) a
mechanism to link both views in a bidirectional way, meaning
that the interaction with one visualization, e.g., the features
space, changes the other visualization, i.e., the data space
(see Fig. 1). The linkage mechanism can be symmetric, but
this is not a requirement.

To present an overview of dual analysis approaches,
we performed a systematic literature review. The general
process is described in Fig. 2. First, we manually identi-
fied a small subset of four publications [1], [13], [17], [21]
from the TVCG and Eurographics journals, which we use
as landmark papers. From these publications, we found
other relevant publications based on a forward- and back-
ward search following the citations (see Sec. 3.2). Then, we
performed a detailed qualitative analysis of the selected
papers, extracting and refining dual analysis characteristics,
yielding a set of keywords (see Sec. 3.3). Finally, to ensure
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our understanding of dual analysis is comprehensive, we
executed a keyword-based search for publications that were
not found by following the citation of the landmarks for-
wards and backward (see Sec. 3.2). In general, we follow
a methodology described by Snyder [39] as a systematic
review to create a theoretical model or framework.

3.1 Landmark Papers

Before making a contribution towards the topic of dual anal-
ysis, i.e., a formal model of the dual analysis paradigm, we
started with a few landmark papers that were foundational
for this technique (see papers marked with ∗ in Tab. 1),
for the primary goal of identifying existing dual analysis
approaches implemented by the VA and visualization com-
munity. These publications are: The first approach by Turkay
et al. [1]. IF , F I -Tables [21], SIRUS [17], and the Dimensions
Projection Matrix/Tree [13]. We chose these publications
since they are referenced by other publications in Tab. 1
and were published in journals with high visibility, more
specifically, TVCG and CGF. We also verified later whether
they are referenced by other publications in Tab. 1. Turkay
et al.’s publications [1], [3], [8], [14], [40], [41] can be viewed
as fundamental to dual analysis, as they introduced the
concept and established the foundation for this approach.

3.2 Forward and Backward Search

We initiated a forward and backward search of reviewed
publications to provide an extensive overview of the exist-
ing dual analysis approaches. We reviewed literature citing
one of the landmark papers, as well as literature that is
cited by landmark papers. This process yields 15 papers
(see Fig. 2) from the IEEE, Eurographics, ACM digital li-
braries, as well as from Elsevier and other literature (i.e.,
Information Visualization, and The Visual Computer). How-
ever, since we also found dual analysis approaches outside
the citations of and from the landmark papers, we decided
to extend our search range by performing an automated
keyword-based search.

3.3 Automated Keyword-based Filtering

From the set of papers that resulted from the forward and
backward search, we created a list of relevant keywords by
extracting key terms in the papers referencing dual analysis
or its components. We combined and cross-referenced the
terms to ensure that we did not overlook any relevant
terms in the field. We selected the keywords: Dual analy-
sis, dual-analysis, dual visual analysis, dual-visual analysis, dual
views, dual space, dual projections, dual scatterplots, feature
space, dimension space, dimensions space, data space, item space,
and items space. We used these keywords for our subsequent
automated search.

To gain an overview of approaches incorporating dual
analysis and also related approaches, we scanned all the
available literature (see Fig. 2). We utilized a plain text scan-
ner to accomplish this task, which extracted the plain text
from each publication and verified the presence of a given
keyword within the paper. The program also generates a
frequency count with which single or multiple keywords

Fig. 3. The top 25 concepts we extracted from the 197 automatically
selected papers (see Sec. 3.3). Five colors contextualize each concept:
• Interaction, • Dimensionality reduction (DR), • Visualization, • Statis-
tics, • Analysis space.

appear, which provides us with an indication of their rele-
vance. We adjusted our chosen keywords to guarantee that
they included all approaches that could be considered dual
analysis without any accidental exclusions. We verified that
all publications of the previous step also appeared in the
result of the automatic keyword-based filtering. This fully
automatic scanning resulted in 197 papers (see Fig. 2). We
encountered a limitation where the final list of keywords
also yielded matches with numerous publications that did
not pertain to a dual analysis approach. However, we con-
tinued to screen this resulting set of publications.

Additionally, from these papers, we extracted core con-
cepts to gain an overview of the used visualizations, tech-
niques, and interactions by stemming all text from all the
previously extracted plain text using CoreNLP. Fig. 3 shows
the top 25 concepts (i.e., word stems) we extracted from
the 197 publications. It shows the number of occurrences on
the x-axis. We grouped the concepts into five thematically
related groups. This overview helped us create our catego-
rizations and formal framework by highlighting essential
topics, such as subspace analysis.

3.4 Paper Coding

We checked the resulting 197 papers manually using the
following criteria. Since this is a rather large set to prune, we
had to define clear exclusion criteria. First, we checked the
paper type. We excluded theory and evaluation papers and
papers covering unrelated or tangential areas, such as ren-
dering techniques or physical flow visualizations. Through
this filtering, we focus on application or technique papers
that analyze high-dimensional data in a domain-specific
context. Meaning that these techniques can be applied in
very distinct domains.
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Second, we checked whether the paper addresses the
core components of dual analysis, i.e., a view visualizing
summaries of features, a view that visualizes the data
records, and linkage of both plots, e.g., through Linking
& Brushing. For example, the IXVC pipeline [42] presents
an interesting technique for explaining the link between
clusters present in lower-dimensional space and the orig-
inal high-dimensional space with a decision tree missing
a dedicated view for the feature space. Based on this, we
obtained a candidate set of 34 relevant papers, which we
subsequently surveyed in detail.

We open-coded the relevant aspects of the components
described in each paper, orienting ourselves along the three
key components and their interactions. For each paper, we
extracted a brief description of the feature space visualiza-
tion, data space visualization, feature space transformation,
data space transformation, interactions between feature and
data space, user tasks, and application domains. Addition-
ally, we iteratively refined the criteria and definition for dual
analysis approaches. The general model Fig. 1 and the three
key components of dual analysis served as initial criteria to
encode which parts are affected by the analysts’ feedback.

However, we had to adapt and refine the definition sev-
eral times. During our study, we discarded several aspects
we initially deemed interesting. For example, we classified
whether an expert or novice uses a system. Most systems
are geared toward domain experts. Thus, we removed this
categorization from the review and our model. As a result,
we arrived at seven scenarios for dual analysis or, encoding
“how the dual analysis approaches can be interacted with”
(see Sec. 4.2). We include the used visualizations, the under-
lying transformations, and the interaction with the compo-
nents. We describe transformations in the context of lossy
and lossless operations describing whether the information
is lost during the transformation step.

3.5 Sample Validation

In this final step, we targeted a more fine-grained analysis
of edge cases and removed 11 samples, in this case, publi-
cations that did not match our definition of dual analysis
in Sec. 3. The general reason for their removal was the
lack of a bidirectional linkage, which is an integral part of
our definition of dual analysis. The technique by Zhang
et al. [43] presents a feature space visualization but is not
linking it with the data space. The approach by Wei et
al. [44] allows interaction with a view representing cluster
prototypes of particle trajectory. However, there is no second
interactive view described. Approaches enabling users to
design a transfer function for volume rendering frequently
visualize the features space [45], [46]. However, there is
no description of direct interaction with the feature or
data space visualization. We also exclude approaches that
show dimensionality-reduced views of the data alongside
other representations [47], [48], [49], [50], since both views
constitute a data space visualization. Our final set consists
of 23 relevant publications, which we present in Tab. 1.
We transformed the table into a set of feature vectors to
present similarities (see Fig. 4). We cleaned the encoding and
grouped the identified approaches into high-level scenarios
(see Sec. 4.2). Finally, we applied our formalization to the

approaches to see whether we could describe each with our
model, which we provide in the supplementary material.

4 EXISTING DUAL ANALYSIS APPROACHES

This section covers all dual analysis approaches, which we
selected following the definition and criteria we described
in Sec. 3. All approaches are listed in Tab. 1, categorizing
each approach according to the key components. Thus,
each approach is characterized by a feature space visual-
ization and a feature space transformation. Symmetrically,
the data space has a visualization and associated data space
transformation. The feature and data space transformations
are categorized into lossy and lossless representations to
reflect that some transformations, such as multidimensional
projections, are inherently lossy and cannot be inverted [25].
We proposed seven descriptive scenarios in Sec. 4.2 to cat-
egorize different tasks for dual analysis structure along the
three questions Why, What, and How proposed by Brehmer
and Munzner [34]. Our descriptive scenarios describe goals
and tasks addressed by dual analysis approaches similar to
those described by Sacha et al.’s literature review on visual
interaction for dimensionality reduction [55]. We also list the
evaluation and application domain to give an overview of
the addressed areas.

4.1 Visualizations and Transformations

We categorize all dual analysis approaches by their in-
dividual representations of feature space and data space
(see Tab. 1). These representations are formed by a visual-
ization type and a transformation method. However, these
techniques do not need to be identical for both spaces.

Feature Space Visualizations: By far, the most common
technique to visualize the feature space is scatterplots SP ,
which are used in ten approaches for representing the
feature space [1], [3], [4], [7], [8], [10], [13], [17], [41], [52].
Most approaches encode information by using the visual
variables color and size [56] in their glyph representations.
However, this encoding is limited. The glyphs visualize only
one or two attributes, e.g., feature weight, relevance, and
category. The position of a glyph often describes the result of
a DR method, particularly MDS [57], while some approaches
encode statistical properties of the features. Scatterplots are
most often used in a symmetric configuration, where the
data space is also visualized with a scatterplot.

Small multiples SM are also used more than one time [9],
[11], [40]. The features are visualized with a heatmap (i.e.,
feature thumbnail), where the color of a pixel represents the
feature values of data items. An alternative is line charts
representing the feature values. The small multiples are
ordered by feature weight and feature relevance.

Other visualizations and representation techniques are
also used. Parallel coordinates plots PCP [15] visualize data
by plotting a polyline crossing parallel coordinate axis [6],
[18]. Zanabria et al. [51] use Star Coordinates SC [58] to
visualize features. Corput et al. [21] use a Data Table DT to
show the feature and data space. Line Graphs LG visualize
the data by connecting individual points in a plot [16]. A
Graph GRA visualizes a network with a node link-diagram.
Itoh et al. [5] visualize dimensions and their relations using
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TABLE 1
We present 23 approaches for dual analysis. We show the feature and data space visualizations: SP Scatterplot, PCP Parallel Coordinate Plot,
SM Small Multiples, Map geographical Map, DT Data Table, SC Star Coordinates, LG Line Graph, GR dimension Graph, HG Histogram,

PIX Pixel visualization. We also show the feature and data space transformations grouped into lossy and lossless transformations: MDS
Multidimensional Scaling, t-SNE t-distributed Stochastic Neighbor Embedding, PCA Principal Component Analysis, IDMAP Interactive
Document Map, RAD RadViz, iStar , a technique embedding data using Star coordinates, FAMD Factor Analysis of Mixed Data, µ, σ

arithmetical mean and standard deviation, the differences relative to them ∆µ,∆σ , and Clu for clustering, which are lossy methods. Lossless
methods are: Id where no transformation is applied, Ord where the order of entities in a view is changed. Sel where the active entities are

selected manually. A number N shows the number of distinct measures or methods. We describe all visualizations and transformations
on Sec. 4.1. An approach addresses one or multiple scenarios: S1 Feature Selection, S2 Feature Aggregation and Weighting, S3 Statistical
Analysis, S4 Subspace Cluster Analysis, S5 Similarity Search, S6 Data Aggregation and Weighting, and S7 Data Selection. We describe

each scenario in Sec. 4.2. Finally, we show the application or evaluation domain of a given approach: Medicine, Biology, Genomics,
Crime Analysis, Social Domain, Nutrition, Financial, Physics and Chemistry, Engineering, Sports, and Musicology.

Feature Space Data Space Scenarios
Visual. Transf. Visual. Transf.

Paper Year SP SM O
th

er

Lo
ss

y

Lo
ss

le
ss

SP PC
P

M
ap

O
th

er

Lo
ss

y

Lo
ss

le
ss

S1 S2 S3 S4 S5 S6 S7 Domain

[1] Turkay et al. (1)∗ 2011 µ, σ PCA
[3] Turkay et al. (2) 2012 7 MDS
[13] Yuan et al.∗ 2013 MDS MDS
[18] Fernstad et al. 2013 PCP 5 PCA
[40] Turkay et al. (3) 2014 Ord Id
[8] Turkay et al. (4) 2014 6 ∆µ,∆σ

[9] Krause et al. 2016 Ord PCA
[21] Corput et al.∗ 2016 DT Ord DT Ord
[51] Zanabria et al. 2016 SC Ord iStar
[16] Self et al. 2016 LG Ord MDS
[5] Itoh et al. 2017 GR MDS Ord
[41] Turkay et al. (5) 2017 MDS Id
[14] Turkay et al. (6) 2017 HG Sel PCA
[10] Jentner et al. 2018 MDS 3
[4] Rauber et al. 2019 MDS t-SNE

[17] Dowling et al.∗ 2019 MDS MDS
[52] Artur and Minghim 2019 RAD RAD
[53] Zhao et al. 2019 HG Ord Sel
[11] Fujiwara et al. 2020 PIX Id PCA
[12] Soriano-Vargas et al. 2020 Clu IDMAP
[6] Garrison et al. 2021 PCP FAMD Sel
[7] Müller et al. 2021 µ, σ Sel
[54] Miller et al. 2022 PIX Ord MDS

Sum 10 3 10 13 10 17 5 3 1 16 7 9 6 9 4 4 10 5

a graph. Histograms HG [14], [53] are used to display sta-
tistical analysis results [14] and results of features selection.
Miller et al. [54] use a Pixel visualization PIX [59] to display
feature values in a matrix configuration.

Feature Space Transformations: We distinguish between
lossy and lossless transformations. In contrast to lossless
transformations, lossy transformations aggregate and re-
duce that data such that original values are lost. The most
common lossy methods used are dimensionality reduction
(DR) techniques. Seven approaches [4], [10], [13], [17], [18],
[41] use the Multidimensional Scaling MDS technique [57],
or derivatives thereof, to create a 2-dimensional projec-
tion of the feature space. The well-known combination of
visualizing the result of DR with scatterplots is used six
times as described for feature space visualizations. The main
purpose of dimensionality reduction in dual analysis is to
create a two-dimensional representation of the data that can
be displayed in a single scatterplot. MDS offers projections
where high-dimensional distances are projected into lower-
dimensional spaces while trying to preserve global distance

relations [60]. For the feature space, this is often a measure of
correlation [17], [18]. A particular case is WMDS, which al-
lows the weighting of individual features and the estimation
of the weight of features according to their position in the
reduced space [17]. RadViz RAD [61] offers an alternative
approach through a radial layout that presents features
as points, i.e., dimensional anchors, which are distributed
equally around the perimeter of a circle [52]. The data items
are placed according to the influence of each dimensional
anchor. For the feature space, the distance is defined as the
correlation between pairs of features.

The second most common lossy method is the usage of
statistical measures, which represent feature summaries as
on the axes of a scatterplot. Values are the mean and standard
deviation µ, σ [1] of all values of a feature. The approaches
by Garrison et al. [6] and Müller et al. [7] deal with mixed
data and, thus, employ statistical measures for categorical
data, like factor analysis for mixed data FAMD [62] and
the coefficient of unalikeability and a definition for standard
deviation thereof µ, σ [7]. Three approaches use more than
five values, i.e., mean, median, standard deviation, variance,
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skewness, and kurtosis N in Tab. 1 shows the number of
measures) [3], [8], [18]. The approach by Sariano-Vargas et
al. [12] uses clustering Clu to transform the feature space
by aggregating features using the K-means or X-means
algorithm, which are also lossy after the aggregation of
clusters into prototypes, i.e., centroids.

We also found lossless ways of structuring the feature
space, such as domain-specific orderings Ord to order fea-
tures based on a summary in a row or column [9], [16], [21],
[40], [51], [53], [54]. No reduction or change to the data is
marked as identity Id [11], e.g., for a Data Table DT and
Parallel Coordinate Plot PCP all feature values of a data item
are displayed. One approach allows for manual selection
Sel of the visualized features [41], which reflects the user’s

selection interaction directly.

Data Space Visualizations: Similar to the feature space
visualization, the most used technique to visualize the data
space are Scatterplots SP . A total of 17 publications use
scatterplots for the data space and combine them with
dimensionality reduction (DR) techniques [1], [3], [4], [9],
[10], [11], [12], [13], [14], [16], [17], [18], [21], [51], [52],
[53], [54]. Another way of visualizing the data space is
Parallel Coordinates Plots PCP , which are only used in four
approaches to represent the data space [5], [9], [18]. PCPs
are used as an auxiliary view to show the dataset. The
approach by Itho et al. [5] uses PCPs to select subspaces
manually. Three approaches by Turkay at al. use a glyph and
geographical Map MAP [14], [40], [41] combination, which
deal with social and census data. In the case of Corput et
al. [21], a Data Table DT is used.

Data Space Transformations: We categorize all data space
transformations into lossy and lossless transformations. All
15 approaches that use scatterplots to visualize the data
space also employ lossy dimensionallity reduction tech-
niques. Principal Component Analysis PCA [2] is used six
approaches [1], [9], [10], [11], [14], [18]. Six approaches [3],
[10], [13], [16], [17], [54] use Multidimensional Scaling MDS
[57]. The t-distributed Stochastic Neighbor Embedding t-SNE
[63] is employed twice [4], [10], including the approach
by Jentner et al., which allows the user to choose between
PCA , MDS , and t-SNE denoted by 3 . Another approach

for dimensionality reduction is RadViz RAD [61], which
we already described as a feature space transformation. It
is used by Artur and Minghim [52] to create a symmetric
dual analysis approach for aggregating features and data
items. The iStar [51] embeds data values relative to star
coordinate axes offering an alternative to RadViz.

Another lossy way of transforming the data space is the
use of statistical measures. The approach by Turkay et al.
(4) [8] uses statistical methods to transform the data space by
using the difference to the mean and standard deviation of a
data point ∆µ,∆σ . This application of statistics is possible
because features are homogeneous, like frequency for the
genes, words in a text document, or intensity of pixels in an
image. The approach by Miller et al. [54] applies a DBSCAN
clustering [64] on the projected data items using a lossy
operation on top of the already lossy MDS projection.

Similarly to the feature space transformations, the data
space can be transformed using lossless methods. The data
table and parallel coordinate plots often show all data items.

We this represent by the identity Id . In this case, it is
combined with a geographical Map MAP or RadViz RAD .
It is also possible to select Sel the visualized data items, i.e.,
manually select or to order Ord them in rows or columns.

[3]
[12]

[7]

[8]

[41]

[1]

[14]

[13]

[40]

[21]

[16]

[51]

[11]

[10]

[17]

[52]

[53]

[5]

[4]

[6]

[9]

[54]

Fig. 4. Similarity-based projection of the 23 papers in Tab. 1. The simi-
larity is defined by one-hot encoding the columns of Tab. 1, excluding
name, year, and domain using the Manhattan distance to create an
MDS projection. We weight the scenarios three times higher, yielding
a scenario-based grouping. Glyphs are colored according to their sce-
narios (see Sec. 4.2) and grouped showing the relation between them.

4.2 Analysis Scenarios
In this section, we describe the seven scenarios addressed
with dual analysis that we found during our literature
review. We also assigned each publication in the area of
dual analysis to one or more of the identified scenarios
(see Tab. 1). These scenarios are also linked to our formal
framework (see Fig. 5), where each scenario is addressed
by a specific component of the dual analysis workflow. We
structured each description along the three main questions,
i.e., Why, What, and How by Brehmer and Munzner [34].

S1 Feature Selection: The purpose of this scenario is the
selection of features for identifying and comparing a set
of features relevant to the analyst. In contrast to other sce-
narios, it is concerned with the original feature values. The
primary mechanism for this scenario is to modify the set of
active features. The main interaction method is a straightfor-
ward selection of the desired features, e.g., through a Lasso
Selector. The selected features are then available for further
analysis. This scenario never occurs alone since it would
only correspond to changes in the data space visualization.
A common partner is S7 Data Selection [4], [5], [9], [52].

We find this scenario for many different visualization
types, as for dual analysis in general, scatterplots are most
prevalent. One example is the approach by Jentner et al. [10],
where specific features can be selected from a feature space
dimensionality reduction-based scatterplot.

S2 Feature Aggregation and Weighting: The goal of this
scenario is to create different feature summaries. For this
purpose, features are aggregated, meaning that a prototype
represents groups. Additionally, a feature or feature pro-
totype can be weighted to emphasize or deemphasize it.
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There are multiple ways dual analysis approaches create
feature aggregations. Most dual analysis approaches make
use of dimensionality reduction techniques for the visual-
ization of feature space. For example, Turkay et al. (2) [3]
use multidimensional scaling. However, some dual analysis
systems allow users to create new features with the primary
goal of reducing the number of features of the dataset.
This is realized by either combing existing features into a
new feature or replacing the original dimensions [18]. This
is achieved via the summation of the weighted values or
by removing variables that are highly correlated to a rep-
resentative dimension. In both cases, dual analysis allows
for observing the relations of the new features relative to
the original dimensions [3]. Dual analysis also supports
the creation and validation of classifiers [4]. Generally, dual
analysis approaches allow for the creation and subsequent
validation of the created features in an iterative loop.

As a secondary way, features can be weighted to give a
specific emphasis. The approach by Dowling et al. [17] does
this by adjusting the weights of the WMDS for the feature
projection. This scenario can require a definition of similar-
ity or dissimilarity for dimensions. The most common way
is to define the similarity of features based on a statistical
measure (e.g., correlation) [10]. Alternatively, the dimension
is condensed to a single numeric statistical value where
the difference is meaningful, such as skewness. These mea-
sures are adapted to represent distance relations, which can
subsequently be used by dimensionality reduction methods
to create scatterplot visualizations through projection tech-
niques. Commonly, Drag & Drop interactions change the
underlying feature weights [17]. With these interactions, the
user can add emphasis to a specific dimension and reduce
the impact of dimensions considered less significant. They
allow users to observe the effect on the data space, e.g., a
change in the general data space patterns.

S3 Statistical Analysis: This scenario is focused on dif-
ferent types of statistical analysis. Generally, it allows users
to analyze groups of features and data items statistically.
For a feature-focused analysis, we found that correlation
exploration is the most common type of statistical analysis
among all dual analysis approaches. One such approach is
the system by Turkay et al. (1) [1]. It has a focus on describ-
ing features by their statistical properties, such as the mean
and standard deviation. Dual analysis also addresses data-
focused statistical analysis, meaning the analysis of data
item groups. One such example is the approach by Müller
et al. [7], which analyzes variance and attribute variability.
In general, this type of analysis focuses on the variance of a
subpopulation of the data, with the goal of finding subsets
in the data that have either a low variance (i.e., clusters)
or high variance (i.e., because of outliers) in their attribute
values. The statistical values are used in the feature and
data space visualizations, either as a determinant of position
(e.g., in a scatterplot) [1], or as a dimension in a PCP.

In terms of interaction, statistical analysis is facilitated
by selecting features in the feature space to modify the set
of features relevant to the data items in the data space. Sim-
ilarly, the set of data items is determined through selection
by the user determining which values are taken into account
for the summary statistics of features.

S4 Similarity Search: The goal of this scenario is to find
similar features of data items while allowing to change the
definition of similarity through parameterization or redefin-
ing of similarity functions. A prime example is the approach
by Corput et al. [21], which allows for the order-based
analysis of features and data items. Generally, dual analysis
facilitates similarity search by ordering features and data
items or representing dissimilarity as the distance between
features or data items [16]. This idea applies to the feature
and data space symmetrically.

For this scenario, the selection interaction is most com-
mon, either selecting an individual feature or item or a
group of both. Through this selection, the definition of
similarity is parametrized, yielding updated feature and
data space visualizations. More specifically, we find a reren-
dering of tables, parallel coordinate plots, and scatterplots
with updated distance relations.

S5 Subspace Cluster Analysis: One main interest of ana-
lysts is the detection of subspace structures, e.g., clusters. A
subspace cluster is a group of similar data items concerning
the subspace dimensions (i.e., features). There are two types
of subspaces, axis-parallel subspaces, defined as true sub-
sets of the original data dimensions. In contrast, arbitrarily
oriented subspaces are created by freely transforming the
data into lower dimensional space, for example, using a
dimensionality reduction technique [65]. In this case, the
new dimensions are harder to interpret since they can result
from a complex transformation (i.e., non-linear projection
techniques). Dual analysis supports the interactive user-
driven analysis of axis-parallel subspaces and arbitrarily
oriented subspaces of linear and non-linear subspaces. For
example, the approach by Yuan et al. [13] is purely con-
cerned with the manual analysis of axis-parallel subspaces
and subspace clusters. This approach uses MDS to project
the analyzed subspaces into 2-dimensional representations,
while subspaces are created by selection on the scatter plot
or toggled specifically. The approach by Jentner et al. [10]
allows for exploring subspace clusters, specifically enabling
analysts to understand cluster characteristics, develop alter-
native clusterings and verify cluster robustness. Turkay et
al. (4) [8] visualize statistical properties and enable analysts
to select clusters (i.e., groups of data points) and observe
their distribution in other subspaces.

In all approaches, selecting subspaces in the feature
space visualization plays a key role. The selection of groups
and clusters in the data space visualization is less often
addressed but needs to be equally covered [13].

S6 Data Aggregation and Weighting: Another straightfor-
ward scenario is data aggregation and weighting. This sce-
nario describes the data space variant of scenario S2 Feature
Aggregation and Weighting. This scenario aims to create syn-
thetic and representative group summaries or prototypes
of the found groups. Additionally, it is concerned with
weighting data items to emphasize or deemphasize them,
e.g., for outlier detection and removal.

Since this scenario is linked to scenario S2 , the inter-
actions associated with it are identical. Primarily, selection
is used to interactively determine groups of data items to
aggregate, while the weighting of data items can also be
established through Drag & Drop.
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S7 Data Selection: A basic but essential scenario that
is addressed by dual analysis is data selection [4], [9],
[40]. This scenario aims to select data items for further
analysis. This scenario describes the data space counterpart
of scenario S1 Feature Selection. This scenario addresses
the unconstrained selection of data, as opposed to finding
groups and clusters of data items, addressed by S6 Data
Aggregation and Weighting.

Approaches address this scenario through selection in-
teraction, such as Lasso Selection, in the data space. The only
data manipulation process we found in the set of works is
labeling data items with a classification algorithm [4]. This
technique focuses on the design of classification systems
allowing for the observation of feature and data space in
dedicated views while allowing for the inspection of dif-
ferent machine learning techniques and their impact on the
classification result.

To provide an overview over we also created a similarity-
based projection of the 23 papers in Tab. 1 (see Fig. 4).
We transformed the entries of Tab. 1 into binary vectors
with one-hot encoding the columns and excluded name,
year, and domain. We used MDS with the Manhattan
distance to create an embedding of the approaches. The
glyphs representing each approach are colored according
to their scenarios. We can observe the highest overlap
between S1 Feature Selection and S7 Data Selection, as
well as S1 Feature Selection and S6 Data Aggregation and
Weighting, due to many approaches allowing the selection
of features. Scenario S5 Subspace Cluster Analysis always
appears with S3 Statistical Analysis, except for the approach
by Yuan et al. [13]. Also, S4 Similarity Search appears to be
aspected by the fact that all these approaches use different
visualizations for feature and data space compared to the
other approaches, mostly using scatterplots.

4.3 Application and Evaluation Domains

Dual analysis has found application in many domains,
most notably in Medicine ( ), where we found seven
approaches [3], [4], [5], [6], [7], [8], [52], ranging from the
analysis of cell abnormalities (e.g., benign or malignant
tumor cells) to the results of magnetic resonance imaging
(MRI) scans. Next is Biology ( ) [4], [14], [16], [17], [18], [53]
and Genomics ( ) [1], [8], where we found seven approaches
combined. Crime Analysis ( ) with five approaches [9],
[10], [11], [12], [17], focuses largely on the analysis of police
reports by transforming the data into a high-dimensional
feature space. Dual analysis is also applied in the Social
Domain, ( ) [21], [40], [41] analyzing different aspects of
society, such as the comparison of households in different
geographic regions. Three publications address the analysis
of Nutrition ( ) [9], [11], [13], by analyzing the nutritional
contents of food items. Two papers deal with problems in
Finance ( ) [12], [14]. Physics and Chemistry ( ) [12], [13],
Engineering ( ) [5], Sports [51] ( ), and Musicology ( ) [54]
are each addressed once.

5 THEORY AND FORMALIZATION

Our formalization encompasses all previous work
(see Tab. 1) and offers opportunities for future research

directions by revealing new and interesting combinations of
methods and analysis scenarios. It serves as a guide for the
implementation of dual analysis approaches by formally
defining the components and their interactions. Most
existing approaches do not include any data manipulations
but instead, transform the feature and data space views to
reveal patterns through the changed perspective.

Our data model is based on the interpretation of the
dataset as one large matrix D ∈ Rr×f where r ∈ N is
the number of data records (i.e., rows), and f ∈ N the
number of attributes or features (i.e., columns). This pro-
vides a clear distinction between feature and data space
and is representative of the two views present in all dual
analysis approaches by taking either a column-focused or
row-focused perspective. All processing steps that produce
additional information (e.g., user interactions or results of
a clustering algorithm) can be stored in a data matrix D as
a new column or row. New features, e.g., aggregated and
weighted features, are stored as a new column. Symmetri-
cally, a new row is added if synthetic data is created, e.g.,
a cluster prototype of K-means. Thus, newly created data
will also be present in all processing steps of the pipeline.
To differentiate functions and operands of the feature and
data space, we use the subscript F for the feature space
and I for the data space, as this naming is also used by
Corput et al. [21]. When referring to a count unrelated
to the original dataset matrix, we use n,m ∈ N. In the
following, M ∈ Rm×n denotes a matrix with n row and m
columns, describing a subselection and aggregation of rows
and columns of the dataset matrix D. The matrix M is D if
no selection step exists. Additionally, we use [[1..n]] ⊂ N
to denote sets of index numbers relative to n, where n
is defined in the local context as the number of rows of
columns of a matrix.

5.1 Feature and Data Types

Dual analysis has been applied to quantitative and qualita-
tive variables, i.e., mixed data [6], [7]. Thus, our formaliza-
tion has to describe data analysis for all common features
and data types, e.g., numeric and categorical data [66]. To
represent each type, the values of column f of the matrix D
denoted by D∗,f ∈ Rr are restricted by one of the following
definitions to reflect specific properties of feature and data
types allowing for the expression of all feature and data
types as numeric values.

Binary value: These features are defined by the value
set {0, 1}, reflecting two categories or a binary label. This
type is either present in the original dataset or is created
through one-hot encoding. This allows for limited analysis
with algorithms for numeric data [67].

Discrete values: This data type describes a simple count as
values in N0. Ordinal data dimensions can be converted into
this data type by considering their ranked order [67]. This
data type is common in social science [14], [41].

Numeric values: This feature type can be divided into two
subcategories. Firstly, bipolar, which is defined as [−x, x] for
x ∈ R+. Secondly, continuous is simply defined as R (interval
and ratio).

https://doi.org/10.1109/TVCG.2023.3288356


The final version of this record is available at: 10.1109/TVCG.2023.3288356
© 2023 IEEE. This is the author’s version of the article that has been published in the IEEE Transactions on Visualization and Computer Graphics journal.

10

Fig. 5. In our framework for dual analysis, the dataset D, is interpreted as a matrix. The matrix can then be transformed by a selection step, where
the data can be reduced. Secondly, the result of this step is used for an aggregation step, which can be used to create representatives. Thirdly
and lastly, feature and data space are visualized using distinct but linked visualizations. All three steps take the result of the previous step as input.
The scenarios are linked with the different steps of the pipeline by supplying parameterizations to the given operation selI (Eq. 7), aggI (Eq. 8),
visI (Eq. 9), for data space operations, and selF (Eq. 1), aggF (Eq. 2), visF (Eq. 3). The analyst can interact with the visualizations, affecting the
previous step and allowing for an immediate response, typical for dual analysis approaches, as described in Sec. 5.4.

Categorical values: This data type can also be represented
in two ways. Firstly, nominal, which describes a label, and
ordinal, describing a label with an order. Statistical measures
designed for nominal and ordinal data were used in dual
analysis [6], [7].

5.2 Feature Space

The feature space is a representation of feature or dimensions,
i.e., columns of a data table. Features or attributes require
different transformations and representations, e.g., showing
the distribution of a feature instead of a single value. Even
though the formalization of the feature space is symmetric
to the data space, the purpose and effect are different by
focusing on the columns of the dataset matrix D.

Feature Selection: Many dual analysis approaches allow
users to select a subset of features for subsequent analysis.
We describe this step in Eq. 1.

selF : (M,F ) → Rr×|F | (1)

where M is the dataset matrix D and F is defined as the
set of selected features concerning the rows of M . The
parameter F is supplied through interactions of the scenar-
ios S1 Feature Selection, S3 Statistical Analysis, S5 Subspace
Cluster Analysis.

Feature Aggregation: This step aggregates features
items to representatives. Additionally, it allows for the appli-
cation of an ordering through the definition of the grouping.
The aggregation of features supports dimensionality reduc-
tion based on the existing features and the calculation of
summary statistics.M is the result of the selection step selF .
To aggregate features, the groups of features are expressed

in the tuples of ψF with each e ∈ ψF a set of column indices,
i.e., features. As for the data space, all existing approaches
constrain this step, such that ψF is a partition of the of
column indices of M . To aggregate groups, we denote the
aggregation function with θF , which reduces a matrix of
selected columns defined by e ∈ ψF by aggregating these
columns and reducing the number of rows to d values using
dimensionality reduction. Now, ψF defines which features
to aggregate, and θF defines the aggregation and reduction
which we formalize in Eq. 2.

aggF : (M,ψF , θF ) → Rd×|ψF |

where M ∈ Rm×n, ψF a partition of [[1..n]]
with e ∈ ψF a set of column indices of M ,

and θF : Rm×|e| → Rd with e ∈ ψF and d ∈ N

(2)

These sets in ψF can be created with a clustering al-
gorithm. For example, k-Means can be used to perform a
clustering based on the columns ofM . The resulting clusters
describe a partitioning of the column indices of M and
can be used as ψF . Subsequently, the centroids of each
cluster could be calculated by defining θF as a function that
averages all rows of a matrix. To reduce the dimensionality
to two dimensions (i.e., d = 2), MDS is could be used.
However, through the application of aggF , the original data
values are lost. Thus, approaches with an aggregation step
are lossy. If a similarity or distance measure is required, e.g.,
for projection, this is modeled by θF .

Techniques combine features by summation and weight-
ing [17], [18]. The parameters ψF and θF are supplied
through interactions of the scenarios S2 Feature Aggregation
and Weighting and S5 Similarity Search.
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Feature Visualization: The feature space is visualized
using any method that matches the task, as shown in Eq. 3.
For example, to detect large groups of features in S5 Sub-
space Analysis Yuan et al. [13] use scatterplots, while for
a more fine-grained analysis of relatedness between a few
features Garrison et al. use [6] parallel coordinate plots. To
describe the visualization of the feature space, we define
visF in Eq. 3.

visF :M → FS (3)

The most frequently used method for visualizing feature
space is scatterplots. Therefore, we describe the scatterplot
as a combination of a glyph drawing function glyphF and a
function posF determining the glyph’s position in the plot.
For a scatterplot, we have Eq. 4.

glyphF : Rm → GF (4)

One example of GF is a pixel-based visualization [12]. The
position of the glyph is determined in Eq. 5.

posF : Rm → (x, y) ∈ R2 (5)

posF usually works by selecting two value form the input
vector as x,y-coordinates. Subsequently, we can define the
appearance and position for glyphs ρi in the feature space
scatterplot in Eq. 6, which gives a complete definition of the
feature space scatterplot.

visF := ∀i ∈ [[1..n]].

ρi = (glyphF (M∗,i), posF (M∗,i)) with M ∈ Rm×n (6)

Most approaches that use a scatterplot to visualize the
feature space relying on a dimensionality reduction method
utilize MDS or variations thereof (see Tab. 1). However,
not just dimensionality reduction techniques can be used
to determine a position of a feature in the feature space
scatterplot. The position of a feature is also determined
by statistical properties, such as mean, standard deviation,
variance, and skewness, by using them to create scatterplot
axes. We do not assign specific scenarios since, for all dual
analysis approaches, the visualization type of the feature
space does not change during the analysis.

5.3 Data Space

The data space represents data items, i.e., rows of a data table
D. It focuses on the analysis of individual data items or
aggregations thereof. We define the following functions to
formalize the processing and relation of steps to create a
data space visualization.

Data Selection: Many dual analysis approaches reduce
the dataset to a subset of data items. We formalize this me-
chanic with Eq. 7, yielding a reduced data set or, ultimately,
a smaller matrix by reducing the number of rows.

selI : (M, I) → R|I|×f (7)

where M is the dataset matrix D and I is defined as the
set of selected data items concerning the rows of M . The
mechanism for determining the subset of row indices I can
be implemented in different ways. A common technique
is Linking & Brushing [68]. However, other methods are
possible, such as the selection of data items based on class

labels, cluster affiliation, filtering, sampling [69], [70] or
grouping instances [33], [71]. The parameter I is supplied
through interactions of the scenarios S3 Statistical Analy-
sis, S5 Subspace Cluster Analysis, and S7 Data Selection.

Data Aggregation and Weighting: This step aggregates
data items to representatives and allows for the application
of an ordering through the definition of the grouping ψI
(see Eq. 8). ψI is defined as a tuple of sets with e ∈ ψI
describing row indices of the matrix M that are aggregated.
θI aggregates a selection of rows defined by e ∈ ψI and
reduces the dimensionality by reducing the number of
columns to d columns. We formalize these functions and
operands in Eq. 8.

aggI : (M,ψI , θI) → R|ψI |×d

where M ∈ Rm×n, ψI a partition of [[1..m]]

with e ∈ ψI a set of row indices of M ,

and θI : R|e|×n → Rd with e ∈ ψI and d ∈ N

(8)

For example, to calculate the centroids of clusters, we can
apply K-means on the full dataset. K-means is an example
algorithm generating ψI yielding a partition of the row
indices of M with e ∈ ψI corresponding to the data
instances assigned to each cluster. The function θI can be
a method to calculate the centroid of a set. By applying
aggI , information is lost, meaning the original data values
are not recoverable. In cases where a similarity or distance
measure is used, e.g., for MDS, we express it as a property
or parameter of θI . Thus, this prototype can represent the
dataset or a synthetic data item. Most commonly, ψI is a
partition of the row indices of M . However, by defining the
groups without this constraint, this function can also show
the underlying data “as is” after the selection step in the
context of their prototype. The parameters ψI and θI are
supplied through interactions of the scenarios S4 Similarity
Search and S6 Data Aggregation.

Data Visualization: Scatterplots are the prevailing data
visualization technique in dual analysis. This step involves
creating a visual display of data items or aggregations.
This is commonly accomplished by utilizing a scatterplot
to display a simple glyph, which is then positioned on the
screen. Thus, we give it a specific focus in our formaliza-
tion. However, we also generally address visualizations like
parallel coordinate plots and small multiples.

Generally, the visualization DS, is generated from a
dataset described as a matrix M . Thus, we define this
overarching function in Eq. 9.

visI :M → DS (9)

When we deal with scatterplots, we can further specify the
generation of the data space visualization by defining how
a glyph of the scatterplot will be drawn. Data glyphs can
show more information than a simple glyph. [72]. We define
a glyph of a scatterplot as a glyph since we do not want
to apply unnecessary restrictions on the design of the data
point representation (see Eq. 10).

glyphI : Rn → GI (10)
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Second, we also define a function to determine the position
of the glyph in the scatterplot in Eq. 11.

posI : Rn → (x, y) ∈ R2 (11)

Thus, with these two functions, we can cover the scatterplot-
based visualization of the data space in Eq. 12, such that
the future system can make use of glyphs designed for the
given task. The following equation describes the application
of these functions to the matrix M by generating a glyph ρi
for each row and determining the position on the plot.

visI := ∀i ∈ [[1..n]].

ρi = (glyphI(Mi,∗, posI(Mi,∗)) with M ∈ Rm×n (12)

To determine a position (see Eq. 11), many approaches
employ projection techniques, i.e., dimensionality reduction
to two dimensions. We found the following set of commonly
used methods in our literature research. They all fit the
requirements for Eq. 11. We found that PCA [2], MDS [57],
t-SNE [63], or IDMAP [73] are commonly used as a function
to determine the position. We refrain from assigning a par-
ticular scenario because all dual analysis methods employ a
single visualization type for the data space, which remains
unchanged throughout the analysis.

5.4 Feature and Data Space Interaction
During our review, we identified Selection, Drag & Drop,
and Focus+Context as interaction paradigms of existing dual
analysis approaches. We will describe how they facilitate
dual analysis by explaining their impact on the feature and
data space.
Selection: The most common technique is the selection of
data items or features. In general, selection is a common
interaction technique [66], [74]. Even techniques that allow
for other ways of interaction support this method. Other
approaches allow for selecting groups in the feature or data
space. Generally, the selection is an interaction component
of the feature or data space visualization. Dual analysis
approaches realize it through a rectangle or lasso selection
on the visualization in scatterplots or axis selection and
brushing on parallel coordinate plots [7]. The interaction
of feature and data space constitutes a form of Linking &
Brushing [1], [13] since selection is used to update feature
and data space according to the selection on one view. In
our framework, selection parameterizes the selF and selI
functions through their parameters F and I . We refer to
selection on one space by the scenarios S1 Feature Selec-
tion and S7 Data Selection. If both parameters are used
simultaneously, we enter the realm of S3 Statistical Analysis
and S5 Subspace Cluster Analysis.

Since selection is a very general technique for interaction
with dual analysis systems, it also applies to S2 Feature
Aggregation and Weighting, as well as, S6 Data Aggregation
and Weighting scenarios. For both scenarios, it determines
which features or data items to aggregate. This is expressed
by the tuples ψF and ψI , which hold the selected groups
for each space and aggregate them, as formalized by aggF
and aggI . Thus, we can see that selection is the most applied
interaction method in dual analysis.
Drag & Drop: The Drag & Drop interaction is an instance
of a direct semantic manipulation [37]. The user modifies

the visual-spatial mapping by rearranging elements in the
visualization. Drag & Drop is coupled with the weighting of
features and data items [16], [17]. Approaches utilizing this
interaction modify the underlying definition of similarity.
In our framework, we express the similarity of features
and data items in the θF and θI of aggF and aggI by
parameterizing the dimensionality reduction. Similarly, it
can parameterize the ordering implicit in the tuples ψF
and ψI . We refer to the interaction on a single space
with the scenarios S2 Feature Aggregation and Weighting
and S6 Data Aggregation and Weighting. If both spaces are
used to parameterize aggF and aggI simultaneously, users
do a S4 Similarity Search [21] reflecting the different goals.

Focus+Context: Another concept in the dual analysis is
Focus+Context [75]. The analyst can interact with visual-
ization via panning and zooming, allowing for navigation
through the visualization. In dual analysis, feature and data
space are visualized, and Focus+Context is applicable to
both visualizations. The main point is to show a selected
region in higher detail (Focus), while preserving the global
point of view in a reduced form (Context). Focus+Context
predominantly involves a single view, and it does not alter
the state of a dual analysis system beyond this scope. Turkay
et al. [1] state a modified definition of Focus+Context, which
describes a subset of dual analysis fully covered by our
selection interactions definition (see above). We state the
difference here for the sake of completeness.

6 EVALUATION

To evaluate our approach, we apply an evaluation strategy
inspired by Sacha et al. [55]. We apply our model to existing
approaches to show that it offers a consistent method to
understand and categorize these systems and analyze their
usefulness for the given scenarios (i.e., descriptive use).
The presented approaches were either landmark papers or
resulted from our literature search and thus also used in
the creation process of the model. However, we found the
selected four approaches [4], [13], [17], [18] to be repre-
sentative of the set of papers described in Tab. 1 covering
all components of the pipeline. Additionally, we show and
discuss gaps that our model revealed that are not addressed
in the current research literature (i.e., generative use).

6.1 Descriptive Use — Examples

In this section, we describe four representative approaches.

Dowling et al. The system by Dowling et al. [17] addresses
the need for feature and data exploration based on simi-
larity to understand the impact of specific domains on the
similarity of data items, as well as the impact of data items
on the similarity of features.

Their publication discusses the technique in terms of fea-
ture importance. Thus, we assigned S2 Feature Aggregation
and Weighting as a suitable scenario. Likewise, the paper de-
scribes the analysis of data items in terms of finding similar
data items after selecting features as less or more important.
Here, we also categorize the approach as S4 Similarity
Search. This approach does not support analyzing feature or
data subsets, except the dataset is pre-processed. Our model
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Dowling et al. [17] Yuan et al. [13] Fernstad et al. [18] Rauber et al. [4]

(a) Examples of dual analysis approaches showing the available feature and data space visualizations.

Dowling et al. [17] Yuan et al. [13] Fernstad et al. [18] Rauber et al. [4]

(b) The instances of our dual analysis process model for each example depict the different components and scenarios.

Fig. 6. We describe four approaches in Sec. 6.1 to demonstrate that our dual analysis framework applies to existing approaches. We show the
application of our model for the systems of Dowling et al. [17], Yuan et al. [13], Fernstad et al. [18], and Rauber et al. [4] as a representative set.

expresses this with the identity Id for selF and selI , since
there is no feature or data selection.

A feature and data space Scatterplot SP are created
using WMDS, which allows weighting dimensions of the
projected data but also allows the estimation of the weight
once the user alters the scatterplot through drag and drop.
The Drag & Drop interactions of the users modify the
position of the data and features on their respective scatter-
plots to modify the perceived similarity to match the user’s
mental model. This mapping of difference in the perceived
distances are realized using WMDS.

The reduction of the vectors describing features and
data items to two values is established by the aggregation
functions θI and θF , respectively, which can accommodate
dimensionality reduction methods, such as WMDS. The key
interaction technique is dragging and dropping of points of
feature and data items in the respective scatterplots which
parameterizes the functions θI and θF .

Yuan et al. [13] present an approach for the interactive
exploration of subspaces to detect subspace clusters. More
generally, the goal of this approach is the detection of inter-
esting structures in subsets of the data. Thus, we assigned
the scenario S5 Subspace Cluster Analysis. This scenario
deals with feature and data item subset selection in a co-
ordinated way. Our framework can express this with selF
and selI , which select feature and data item subsets.

Feature and data space visualizations are visualized
using MDS projections with Scatterplots SP . In the case of
the feature space, this can be multiple views, which are de-
termined interactively by the user through selection on the
data space visualization. Distances for features are defined
using the Pearson correlation, and distances between data
items are calculated using the Euclidean distance. In our
model, we express both dimensionality reduction methods
through θI and θF defining each dimensionality reduction.
These steps remain static during the analysis process., i.e.,
they do not have user-steered parameters.

The selection interaction of this approach is realized with

a Lasso Selector on the feature and data space projection. A
selection on both views directly parametrizes the selection
expressed by F for selF and I for selI . This approach allows
for creating multiple features and data space visualizations,
enabling the comparison of different spaces.

Fernstad et al. The approach by Fernstad et al. [18] ad-
dresses the need for statistical analysis of features and sub-
groups of data items. Thus, we assign the scenarios S2 Sta-
tistical Analysis and S7 Data Aggregation. The approach is
focused on dimensionality reduction using “quality mea-
sures,” which are five statistical measures such as variance
and skewness denoted by 5 . The feature space visualization
is a parallel coordinate plot showing these five values plus
two measures derived from Pearson correlation.

All measures remain static throughout the analysis. We
express them in our model through θF , which, in this case,
comprises all five statistical measures. The approach by
Fernstad et al. [18] is one approach that offers two data
space visualization to address both scenarios. All views are
linked views. The data space is visualized with a scatterplot
SP . The approach covers the selection of specific data items,

which parametrizes the selection function selI using I .
For the scatterplot visualization, the data items’ dimen-

sionality is further reduced using Principal Component Analy-
sis PCA , denoted as the aggregation function θI . Alongside
the scatterplot, another Parallel Coordinate Plot PCP shows
the selected data items without further reduction. The se-
lections on each visualization provide parameters for our
selection function, i.e., selF and selI .

Rauber et al. The approach by Rauber et al. [4] focuses
on the design of classification systems using projections. In
this case, the components related to dual analysis are em-
bedded in a larger system, where not all parts feedback into
the dual analysis components. The approach supports the
interactive selection of features, thus enabling S1 Feature
Selection. Additionally, it allows the selection of data items
to be used in the classification process. Thus, we also assign
scenario S7 Data Selection.

https://doi.org/10.1109/TVCG.2023.3288356
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Feature and data space are both visualized using scat-
terplots SP . However, they differ in the transformation to
determine the x and y-coordinates for each view. The feature
space uses Multidimensional Scaling MDS using the Pearson
correlation as distance measure. We map this property to
our framework with the function θF of aggrF . The data
space uses t-distributed Stochastic Neighborhood Embedding
t-SNE . We express this within our framework by using the

two functions θI of aggrI .

Both functions are not further parameterized since no
user interaction influences them. However, the feature and
data item selection is part of our approach. The selection of
features is expressed using parameter F of selF and I of
selI for data items. The selection interaction on both views
of the user directly determines these two parameters.

6.2 Generative Use – Opportunities

In this section, we highlight and describe future research
opportunities which extend components of our proposed
framework. We deliberately designed our formalization to
encompass these improvements to dual analysis.

Glyph Design and Adaptation: In our review, we found
that most approaches use straightforward scatterplots,
where a dot visually encodes two data item properties
through color and size. Thus, the next logical step, sup-
ported by our formalization, is the integration of glyphs into
the scatterplots of the feature and data space visualizations.
This allows for the representation of more properties of the
data [72]. These glyphs can also be adaptive to the data
types of the analyzed dataset. This improvement is derived
from our definition of feature and data space visualizations,
i.e, FS and DS, (see Fig. 5), which we already extend by
defining specific functions for glyph-based visualizations
glyphI and glyphF (see Eq. 10 and Eq. 4).

Scatterplot Layout Enrichment: Our formalization re-
vealed that the visualization of feature and data space
remains straightforward, i.e., primarily based on MDS or
PCA projections. The remaining task is to expand visualiza-
tions using methods encoding manifold properties in the
plot [25]. Since dual analysis approaches make extensive
use of dimensionality reduction and scatterplot visualiza-
tions, even manipulating parameters of the dimensionality
reduction [16], [17], we see a clear need for additional
visual feedback. An example of this idea is uPCA [76] and
uMDS [77], where uncertainty is visualized. We can adapt
how the feature and data space are visualized to integrate
such a technique. We propose this in the context of the
visualization steps visI and visF (see Eq. 9 and Eq. 3).

Subspace Detection Algorithms: Four approaches we
found during our review mainly address the analysis of
subspaces and subspace clusters [8], [13], [14], [41]. How-
ever, all techniques provide a purely interactive and user-
driven way of subspace cluster analysis. Our formalization
allows for an integration of machine learning algorithms for
the detection of relevant subspace [65]. In particular, SURF-
ING [22], SUBCLU [78], and RIS [79]. They detect potentially
interesting subspaces based on data distribution density.
These algorithms can be integrated as parameterizations for

the steps of our pipeline to support the realization of sce-
nario S5 Subspace Cluster Analysis (see Fig. 5). For example,
SURFING can be integrated to facilitate the detection of
interesting subspaces by suggesting a selection of features
represented by parameter F of selF in our framework.
Similarly, subspace clusters can be detected beforehand
determining parameters F of selF and I of selI , while dual
analysis allows for the exploration of the involved features
and data items.

Analytical Provenance: The representation of the dataset
as a matrix (i.e., SF , SI , AF , and AI in Fig. 5) at each
step of the dual analysis pipeline allows for a nuanced
tracking of the analysis state. Steinparz et al. [80] and Hin-
terreiter et al. [26] systematized the comparison of matrices
for analytical provenance allowing for the comparison and
visualizations of different analysis paths. Thus, we support
the integration of tracking analysis states by formalizing the
matrix representations at every step of our framework.

User Guidance: We also found that no approach involves
user guidance. Similarly to analytical provenance, our for-
malization allows for integrating guidance methods since
each step’s data selection and layout is well-defined. The
next logical step is to contrast each stage of the pipeline
(see Fig. 5) with guidance scenarios to find interesting
ways to help analysts in their analysis tasks through guid-
ance [27]. Practical guidance frameworks such as Lotse by
Sperrle et al. [81] require clearly defined data sources and
conditions for their guidance strategies, which our frame-
work enables. For example, suggesting the feature selection
F of selF , based on what the user has already observed.

7 LIMITATIONS AND DISCUSSION

During our work, we found that the space of dual analysis
approaches is vast. We identified two papers providing
model sketches for their dual analysis approaches. When
comparing them to our framework, we find that both allow
for only a subset of scenarios and interactions, i.e., the dual
analysis approach by Corput et al. [21] focuses on order-
ing data table entries according to relevance or similarity
metrics of features and data items. This only covers the
scenarios S4 Similarity Search and S6 Data Aggregation and
Weighting. The approach by Turkay at al. [1] focuses on
S3 Statistical Analysis through linking and brushing.

In both publications, the theory behind each approach
states the specifics of the approach, i.e., which metrics are
used; a generalization allowing for creating a dual analysis
toolbox is missing. Although both approaches describe a
model of dual analysis, both publications describe dual
analysis differently and only converge if generalized to an
abstract definition of dual analysis (see Fig. 1). Hence, both
publications do not propose a generalized framework. In
our work, we provide a formalized framework that offers
well-defined interfaces for each described component used
in the dual analysis, which covers 23 approaches and thus
unifying frameworks of dual analysis.

Our work comes with limitations resulting from the
approach we adopted. To keep the study focused on dual
analysis, we had to define dual analysis in Sec. 5, limiting
the literature analysis to a representative set of examples,
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explicitly excluding other approaches, such as VA dash-
boards. We aimed to identify papers that contribute a dual
analysis approach for a given analysis problem, offering
interactions beyond filtering. We primarily aimed at results
with practical relevance, transparency, and reproducibility.

We thoroughly described our method and decision-
making process. Thus, we are confident that we analyzed
a representative set of publications and that our framework
and formalization contribute to future research. It would
be interesting to evaluate the stability of our results in the
future by performing an expanded “cross-validation” study
that would add papers published in the future. We initially
started our analysis with landmark publications from all
domains and had to limit the number of papers to keep
the work manageable. Our literature analysis identified sev-
eral contributions that offer valuable interactions to explore
datasets and validate hypotheses with dual analysis.

We had long discussions about which interactions to
include as scenarios, but we finally decided on the seven
descriptive scenarios, which cover all 23 approaches listed
in Tab. 1. Other aspects may be included in the inter-
active dual analysis, which can be integrated into many
VA frameworks in general. An interesting opportunity, for
example, is visualization quality measures, which was a
primary concern when we began this study [82]. The frame-
work by Bertini et al. [83], later extended by Behrisch et
al. [84], describes an enriched VA pipeline with quality-
metric-driven automation. Quality can be measured at each
analysis step (i.e., upon a view update) while the analyst
steers the process. Quality metrics can aid user interactions
with automatic configurations or recommendations at each
step. However, quality metrics do not interact with the
underlying data, selection, or aggregation but rather the
visualizations themselves and can be seen as an add-on to
our proposed formal framework.

We also described machine learning algorithms for di-
mensionality reduction and relevant subspace detection.
Yet, incorporating other machine learning techniques, e.g.,
for classification, might be a worthwhile pursuit as well [4],
[85]. Still, as we established the framework, we focused
exclusively on analysis scenarios with dual analysis and its
three key components with a bidirectional linking of feature
and data space.

In future work, we want to implement a framework
based on the presented model we derived from existing
literature. As a general finding, we can state that all dual
analysis approaches, indeed, fit into a generalized model,
which can be used to categorize existing analysis systems
and show other possibilities for combining different compo-
nents. We also found that even a specific analysis approach,
in this case, dual analysis, is challenging to define. First, to
find relevant literature amid all visual analytics approaches.
Second, to arrange, condense, and organize the different
approaches into a coherent and comprehensive overview.

8 CONCLUSION AND FUTURE WORK

Enabling users to explore and analyze the data and feature
space of a dataset while maintaining the ability for the user
to apply their knowledge about the data, task, and domain
provide a great benefit. To achieve this, a comprehensive

link between the two spaces needs to be established, which
often depends on domain specificities. In this study, we
systematically analyzed the visual analytics literature to
identify and categorize approaches using dual analysis, i.e.,
the simultaneous analysis of feature and data space.

We presented our findings through seven descriptive
scenarios, which we contextualize with a formalized dual
analysis framework. Our analysis revealed several ways
that dual analysis can be enriched by incorporating other
techniques, such as layout-enrichment of the 2-dimensional
projections and suggestions for interesting subspaces. We
presented how current VA systems and points support
existing strategies for future research directions. We hope
our contributions help other researchers investigate, design,
and evaluate dual analysis approaches. In future work, we
plan to develop a system capable of inferring and adapting
its settings in a larger design space than current systems for
dual analysis. We aim to leverage existing techniques from
related domains, such as machine learning and human-
computer interaction, to improve dual analysis for more
efficient and effective data analysis.
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