
© 2024 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization conference.
The final version of this record is available at: 10.1109/VDS63897.2024.00008

The Categorical Data Map:
A Multidimensional Scaling-Based Approach

Frederik L. Dennig , Lucas Joos , Patrick Paetzold , Daniela Blumberg ,
Oliver Deussen , Daniel A. Keim , and Maximilian T. Fischer

Fig. 1: The Categorical Data Map enables projection-based analysis of categorical data here exemplified by the Property Sales
dataset [48] with MDS [80] using the Jaccard coefficient [39]: (1) shows 10 groups without layout enrichment. Our method reveals
the patterns annotated in (1) in plots (2)-(4). (2) shows a clear separation between Private Property vs Public Property. (3) indicates
boundaries and symmetries for the Location of Purchased Property attribute, while in (4), the Property Type Purchased contributes the least
to the clusters. The glyph sizes encode the subset sizes, revealing that categories Private Propriety and Central often occur together.

Abstract—Categorical data does not have an intrinsic definition of distance or order, and thus, established visualization techniques for
categorical data only allow for a set-based or frequency-based analysis, e.g., through Euler diagrams or Parallel Sets, and do not
support a similarity-based analysis. We present a dimensionality reduction-based visualization for categorical data based on defining
the distance of two data items as the number of varying attributes. Our technique enables users to pre-attentively detect groups of
similar data items and observe the properties of the projection, such as attributes strongly influencing the embedding. Our prototype
visually encodes data properties in an enhanced scatterplot-like visualization, visualizing attributes in the background to show the
distribution of categories. We propose two graph-based measures to quantify the plot’s visual quality for ranking attributes according to
their contribution to cluster cohesion. To demonstrate the capabilities of our method, we compare it to Euler diagrams and Parallel Sets
regarding visual scalability and evaluate it quantitatively on seven real-world datasets using a range of common quality metrics. We
conducted an expert study with five data scientists analyzing the Titanic and Mushroom datasets with up to 23 attributes and 8124
category combinations. Our results indicate that our Categorical Data Map is an effective analysis method for large datasets with a
high number of category combinations.

Index Terms—Categorical data, dimensionality reduction, cluster analysis, similarity-based representation, information visualization

1 INTRODUCTION

Categorical data can be encountered in numerous domains, such as
representing inventory data describing product properties like color
in sales or bioinformatics, encoding the genes formed by nucleotide
sequences [2]. In contrast to numeric and ordinal data, categorical
data does not have an intrinsic order or distance associated with each
value pair. The visual analysis of categorical data is challenging since
categorical data describes an attribute by name only, with the only
supported operators being equality, set membership, and mode.

Currently, there are two widespread methods of visualizing cate-
gorical data: (1) Frequency-based visualizations [37, 75, 85] map the
categorical values to their frequencies, for example, through bar charts,
pie charts, or enhanced variants, such as stacked bar charts. In contrast,
(2) set visualizations solely focus on the set nature of categorical data
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items, specifically their intersections [4]. Examples include such as
Euler diagrams [62] and UpSet plots [53]. Set visualizations like Euler
diagrams do not scale well for sets with many intersections because
visual clutter is detrimental to their readability. Other, less common
solutions treat dimensions independently and map data to a continuous
design model [40, 68, 78], leveraging visualization types that initially
have been designed for numerical data, such as scatterplots or par-
allel coordinate plots. However, these approaches deviate from the
discrete nature of categorical data and suffer from visual clutter and
overplotting, limiting their readability [49]. Approaches, such as Par-
allel Sets [15] and Sankey diagrams [46], follow the frequency and
set-based paradigms. These approaches trade effectiveness in visual-
izing the presence of small subsets for the presentation of frequency
information. These approaches require additional design considerations
since they tend to emphasize preselected attributes over others [28].

None of the previously described techniques support the similarity-
based analysis of categorical data, i.e., deriving the similarity of cate-
gorical data items as distances such that similar data items are placed
close to each other while differing data items are positioned far apart.
Analyzing categorical data based on a group or subset similarity is use-
ful, e.g., visually clustering data items only differing in a few attributes
can help us better understand important characteristics of the group.
Generally, this would allow us to apply methods from cluster analysis
to categorical data.

We follow the suggestion by Broeksema et al. [19] to investigate
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multidimensional scaling to generate visual mappings that enable the
interpretation of distances and simultaneously convey the properties of
data items, i.e., effectively visualizing an item’s attributes by using color
and position to visually encode attributes. Through this, we address the
combinatorial problem of categorical data, i.e., that with the increasing
number of attributes and categories, the number of required colors to
represent a category with distinguishable colors becomes increasingly
difficult. Tackling these challenges, we contribute the following:

(1) A technique applying multidimensional scaling to categorical data
while visually encoding the category distribution into the back-
ground. Through layout enrichment, we enable the exploration
of the category distribution, enhancing orientation and navigation.
Additionally, we contribute four glyph designs to represent categor-
ical subsets.

(2) Quality measures based on subset distribution to guide the analysis,
recommending layout enriched views on attributes contributing
strongly to clusters and subset separation.

(3) A quantitative comparison to multiple correspondence analysis-
based projections and a qualitative expert study validating the
effectiveness of our approach.

(4) An online demonstrator (https://dennig.dbvis.de/categorical-data-
map) making the acquired results accessible. To further aid repro-
ducibility, we openly publish all our datasets and source code via
OSF (osf.io/jzd46) and the Data Repository of the University of
Stuttgart (DaRUS) [29].

With this work, we aim to widen the analytical capabilities for
categorical data, particularly for exploratory analysis.

2 RELATED WORK

Our approach is related to visualization and dimensionality reduction
methods for categorical data. Furthermore, we propose a layout en-
richment for multidimensional projections and contribute visual quality
metrics for categorical data projections.

2.1 Visualization Techniques for Categorical Data
Set visualization is one of the core techniques for categorical data. To
visualize the members of sets and their intersections, Venn and Euler
diagrams are the two most prevalent representations [12]. Multiple
adaptations of both techniques mitigate challenges, e.g., to preserve
semantics [44], draw area-proportional diagrams [65], or incorporate
glyphs to show additional information [58]. Other set visualization tech-
niques use lines to indicate set intersections [66] and matrices to show
the cardinality of intersection sets [54], or include the semantic context
to visualize sets [57]. Alsallakh et al. presented a comprehensive survey
on set visualizations [4]. There are also frequency-based visualization
methods that focus on attribute frequencies, such as Mosaic plots [37]
and Parallel Bargrams [85] by mapping data item occurrences to one
or multiple attributes, e.g., a rectangle’s area. Other methods map
data to a continuous design model, such that they are compatible with
visualization for numeric data, e.g., Rosario et al. [68] describe the
mapping of categorical data to numeric values for the visualization in
Parallel Coordinates [38]. Hybrid methods consider both aspects, e.g.,
Parallel Sets [15,49] and Sankey diagrams [46]. However, Parallel Sets
and Sankey diagrams can suffer from the Müller-Lyer and Sine illu-
sions [27, 81] where lines seem to vary in distance or length, affecting
the accurate interpretation of frequencies and proportions.

While plenty of approaches visualize categorical data, to the best of
our knowledge, none allows identifying groups of similar data items.
Thus, we propose a visualization that focuses on similarity.

2.2 Dimensionality Reduction for Categorical Data
Our approach makes use of dimensionality reduction (DR). How-
ever, there exist DR methods for categorical data that do not focus
on similarity but rather describe the central oppositions in the data [34].
When needing to reduce the dimensionality of categorical data, Cor-
respondence Analysis (CA), similar to Principal Component Analysis
(PCA) [42] for numerical data, extracts the standard coordinates, yield-
ing a Biplot [33] of the reduced space. In case of more than two

categorical variables, Multiple Correspondence Analysis (MCA) can
be used to reduce the number of dimensions showing the central op-
positions [34]. Factor analysis of mixed data (FAMD) is a principal
component technique for continuous and categorical variables [63].
The continuous variables are scaled to unit variance, and the categorical
variables are transformed into a disjunctive data table and then scaled
using the specific scaling of MCA to balance the influence of both
continuous and categorical variables in the analysis. Multiple Factor
Analysis (MFA) combines these methods for mixed data: It uses PCA
when variables are quantitative, MCA when variables are qualitative,
and FAMD when the active variables belong to both of the two types.
The Data Context Map [23] visualizes mixed-data using an MDS-based
plot and displays categorical attributes on top of the projection while
also coloring points and regions according to the predominant category.
The approach by Thane et al. [79] uses force-directed graph layouts to
visualize categorical datasets representing categories as nodes while
edges represent their co-occurrence.

MCA can embed categorical data but, like PCA, is a linear dimen-
sionality reduction technique and thus not able to detect non-linear
relationships [19, 34]. We propose using MDS to visualize the similar-
ity of categorical data points in a scatterplot-like layout.

2.3 Layout Enrichment for 2-Dimensional Data Projections
The idea to enrich scatterplot layouts by encoding additional infor-
mation in the background of a projection is not new [61]. The main
usage occurs for the visualization of distortions in the topology of the
embedding resulting from DR [6]. The following approaches make
use of Voronoi diagrams [9] to encode additional information in the
background of a projection. Lespinats and Aupetit proposed Check-
Viz [52], visualizing the presence of tears (i.e., missing neighborhood)
and shuffled data (i.e., wrong neighborhood). Broeksema et al. ex-
plored the visualization of categorical data, combining MCA with an
enhanced treeview to integrate data record information visualizing user-
selected categories. However, they did not address the high redundancy
of categorical datasets [19]. Sohns et al. followed a similar approach;
however, they used non-linear DR methods to project mixed data while
using categorical attributes to highlight areas of the embedding space.
However, this approach excludes all categorical attributes from the DR
process altogether [72]. DICON enables the analysis of multidimen-
sional clusters with an interactive icon-based visualization that encodes
additional statistical information visually using space-filling methods,
including Voronoi diagrams [21]. Aside from using Voronoi diagrams,
other methods for layout enrichment exist [16]. Morariu et al. en-
code the projection’s quality into the plot’s background using contours
showing the embedding of projections called the metamap [60].

Layout enrichment methods largely focus on visualizing distortions
of the projection. The approach by Broeksema et al. [19] does not ad-
dress the analysis of a single attribute, so we propose a new enrichment
that encodes the category of an attribute using color.

2.4 Metrics for Quality and Patterns in Visualizations
Quality metrics for visualizations describe a set of measurements de-
signed to optimize visualizations in terms of readability and clutter
reduction [14]. Other metrics quantify the presence of patterns in a
visualization. Instead of measuring quality, pattern metrics can be
used to compare and rank different visualizations based on specific
properties. Examples are: Magnostics for matrix visualizations [13],
Scagnostics for general patterns and trends on scatterplots of numeric
data [84], Pargnostics for parallel coordinate plots [25], Visualgnostics
for projections of high-dimensional data [51], Pixgnostics for pixel-
based visualizations [70], and ParSetgnostics for Parallel Sets [28].
SepMe is a machine-learning-based approach to quantify the presence
of clusters in scatterplots [8], while ClustMe quantifies the visual sep-
aration of classes in scatterplots [1]. Aupetit and Catz [7] addressed
the analysis of high-dimensional labeled data using graphs, including
Voronoi diagrams. However, this approach does not address categorical
data analysis, i.e., where no numerical attributes are present.

We contribute two novel measures for quantifying visual quality for
2-dimensional projections of categorical data. In this way, we improve
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the exploration of categorical data by recommending layout-enriched
views according to their visual structure.

3 CONSTRUCTING THE CATEGORICAL DATA MAP

Typically, categorical datasets exhibit inherent sparsity, i.e., only a
fraction of all possible category combinations is present in a dataset,
e.g., for the Mushroom dataset, only 8124 out of 243.799.621.632.000
possible combinations. Thus, we assume that there are relationships
among the existing categories restricting their combinations. Addi-
tionally, categorical datasets can be highly redundant, e.g., the Titanic
dataset contains 2201 data items but only 24 unique entries, i.e., all
data items can be assigned to one of 24 subsets. Thus, we focus on
categorical subsets as subsets of unique attribute values. These subsets
are our main representations, enabling us to assign a frequency. We
leverage these properties in the design of the Categorical Data Map as
an analytical approach for the similarity-based analysis of categorical
subsets with the following constraints:

(C1) Distances of categorical subsets in a scatterplot should indicate
similarity, i.e., subsets with a smaller distance should differ in
fewer attributes than subsets with a larger distance.

(C2) Allow analysts to find groups of subsets by clustering similar
categorical subsets and separating outliers.

(C3) Highlight attributes contributing to the clustering of subsets en-
abling navigation and orientation in the projection.

(C4) Provide a recommendation for attributes to explore first, linked
to the distribution of categories in the plot.

An example of our approach is shown in Fig.1. (C1) and (C2) are
described further in Sec.3.1. We address (C3) by evaluating different
glyph designs and layout enrichments for subsets of categorical data
(see Sec. 3.2). We address (C4) in Sec. 3.3, describing measures to
rank attributes according to their degree of splitting the embedding into
connected areas. In the following, we describe how we derive distance
relations of categorical data and how a projection-based approach, i.e.,
the Categorical Data Map, is constructed.

3.1 Projecting Categorical Data

The Categorical Data Map enables the visual clustering of similar
categorical subsets and separating outliers, addressing (C1) and (C2).
At the core, we rely on DR to create a scatterplot-like visualization. In
general, we describe encoding E, distance measure M, DR method P,
and overlap reduction method O to project a categorical dataset x by
applying O(P(M(E(x)))).

Encoding (E): We convert all data items into a set representing their
categorical data values. We define the set of all attributes as A :=
{a1,a2, . . . ,a|A |} and the possible categories associated with attribute

ai as the set Ci := {c1
i ,c

2
i , . . . ,c

|Ci|
i } with i ∈ N. |A | is the cardinality

of a set representing a data item, i.e., the number of attributes since a
data item has one category associated with each attribute. We denote
a data item as xn = (cn1

1 ,cn2
2 , ...,c

n|A |
|A | ). From a practical point of view,

we make sure that all categories have a unique descriptor across all
attributes. We then create a representation compatible with the distance
measure. We explored the set representation and two variants of one-
hot encoding [20, 35] (see supplementary material for more details).

Distance Measure (M): With the set representation, we can describe
the categories of a data item to define similarity. Based on surveys
on distance measures for categorical data [17, 22, 76], we chose and
evaluated three set-based distance measures: Overlap coefficient [83],
Jaccard Similarity Index [39], and Sørenson-Dice coefficient [73]. By
including one-hot encoding, converting each categorical value to a
new binary dimension enables us to use classical distance measures,
such as Euclidean or Manhattan distance, to describe a dissimilarity
relationship (see supplementary material for more details).

Projection Method (P): DR techniques are a set of non-/linear transfor-
mation methods with which a dataset’s dimensionality can be reduced.
We compared the following two DR methods.

Multiple Correspondence Analysis (MCA): This method is the categori-
cal equivalent of PCA. MCA creates groups of items that are similar
according to their categories. Objects sharing the same categories are
placed close together, and objects with differing categories are placed
far apart [34]. To our knowledge, MCA is the only existing technique
that directly uses the set representation of categorical data.
Multidimensional Scaling (MDS): This method describes a set of linear
and nonlinear DR techniques that attempt to preserve pairwise distances.
Multiple criteria are possible; Kruskal’s stress optimization criterion
is usually used [50]. We create a dissimilarity matrix to compute the
projection given one of the described distance measures.

We chose the two methods based on their popularity and common
usage in visual data analysis [19, 30] and compared MDS and MCA as
DR methods for categorical data.

However, a key difference between both methods is that MCA re-
duces the number of projected points to the number of unique subsets,
while MDS, applied naively, would result in a number of projected
points equal to the number of categorial data items. Since categorical
datasets can contain many duplicates, projecting each data point indi-
vidually and using a DR method for numeric data (e.g., MDS) could
lead to multiple data points being projected to the same position. The
main reason is that the distance of identical points is zero. To achieve
a comparable result, i.e., the same number of projected points, we
remove all duplicates and project one data point for each unique combi-
nation of attribute values, i.e., for each categorical subset, describing
the prototype of the represented data subset. A second reason is that
we want to show the subsets represented by a point irrespective of the
method (e.g., MCA or MDS). We visually represent a subset’s size
(see Sec.3.2). Reducing the number of data points also improves the
runtime of projection algorithms for datasets with duplicate items.
Overlap Reduction (O): Given that some subsets in the categorical
data may differ in only one or a few attributes, these subsets will be
projected close to each other. This property is desirable in the design
of a map by keeping the distances representing similarity coherent.
However, it may also introduce overlap if the projected point visually
encodes the subset categories through a glyph representation. Addition-
ally, points that are close together will yield small or narrow-shaped
Voronoi cells. Thus, we allow users to reduce the overlap after pro-
jecting the data using a method based on force-directed graph drawing.
This type of layout applies forces to the nodes and edges of a graph [47].
We add a repulsive force to all points with a strength equal to the radius
of the glyph while all points are vertices of a fully connected graph,
forcing all points into a configuration without overlap but with minimal
space in between the glyphs.

3.2 Representing Categorical Data Subsets in Scatterplots
We implemented the visual components of the Categorical Data Map
using D3 [18]. To represent categorical subsets, we developed four
glyph representations and the layout enrichment based on experi-
ences gained during the design phase, addressing (C3). To represent
categories, we use the d3.schemeCategory10 color scale, a well-
established color scale for categorical data.
Glyph Representation: To represent categorical subsets, we developed
four glyph representations. All glyphs visualize the attributes and their
respective values by dividing a square or circle into segments of equal
size, such that each segment represents one attribute. This square-based
glyph is inspired by pixel visualizations pioneered by Keim et al. [45].
In Fig.2, this is represented by the categories a1 to a8 for the case of a
dataset with eight attributes. For all glyphs, the segments are colored
according to the respective category of the attribute. However, we
discuss some limitations in Sec. 6. The area-based glyphs represent
the relative size of a subset s ∈ N by the area (see Fig.2 (a) and (c)).
Thus, we calculate the width and height accordingly. The bar- and
arc-based glyphs have a fixed size to minimize space requirements and
overlap issues with neighboring glyphs (see Fig. 2 (b) and (d)). To
reduce overlap while preserving the relative proximity of the projected
points, we decided to map a subset’s size s ∈ N to a bar at the top or
an arc surrounding the glyph as an alternative encoding for the subset
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(a) Area square (b) Bar square (c) Area circle (d) Arc circle

Fig. 2: Representation of subsets for a dataset with eight attributes.
(a) shows the eight attributes in four segments with the same area while
the size encodes the overall subset size. (b) shows a similar glyph, but
instead, the size is encoded by a bar at the top, and all glyphs have
the same size. (c) Encodes the attributes similar to the area square but
is circle-shaped. (d) encodes the size by an arc filled according to the
subset size.

Fedge(a1) = 0.17 Fedge(a2) = 0.17 Fedge(a3) = 0.42 Fedge(a4) = 0.79
Fcomp(a1) = 0 Fcomp(a2) = 0 Fcomp(a3) = 0 Fcomp(a4) = 0.69

Fig. 3: The fracturedness of attributes differs a lot and can imply an order,
i.e., increasing from left to right. The examples are derived from the
Titanic dataset [26]. The edge-based (i.e., Fedge) and component-based
fracturedness (i.e., Fcomp) values are provided below for each attribute.

size. Hence, each unique subset is represented by a square or circle
sized relative to the percentage of data points the subset represents or
an indicator filled accordingly. This enables users to perceive similar
subsets and assess the size of each group.
Layout Enrichment: To enable the observation of cluster characteris-
tics and explore attributes in the projected space, we show a Voronoi
diagram [9] for a selected attribute (see Fig.1). The Voronoi diagram
automatically partitions the map into polygons such that each polygon
contains exactly one subset. By selecting one attribute of interest, the
partition for the selected attribute gets displayed in the background of
the projection. The color of the polygon then encodes the category of
the selected attribute. Thereby, it is possible to directly spot cluster
regions for the selected attribute and to identify cluster boundaries and
outlying data points. The appearance of the background can differ a lot
across attributes (see Fig.3). Attributes form distinct contiguous areas
of different sizes, indicating a neighborhood or larger area of subsets of
the same category. We added detail-on-demand using tooltips, allowing
users to see the respective category for each polygon directly.

3.3 Measuring Fracturedness
We quantify fracturedness, generally defined as the strength with which
the Voronoi partitioning of an attribute appears disjointed and fractured
(see Fig.3). We use fracturedness to suggest attributes for analysis, e.g.,
the lower the fracturedness value, the larger the contiguous areas of
categories and thus the more straightforward to orient along, addressing
(C4). We use the Delaunay triangulation of the Voronoi diagram [9]
as a basis for our measures. In contrast to Aupetit and Catz [7], we
describe measures for purely categorical datasets. Before describing
the measures, we define the common notations following established
notations [7, 24]. Let G := (V,E) be the Delaunay triangulation of the
discrete set of points P resulting from the projection (see Sec.3.1). Thus,
G is an undirected graph and the dual graph of the Voronoi diagram of
the points P. Therefore, there exists exactly one v ∈V for every p ∈ P
defining its x,y-location and categories. Each vertex v ∈V has exactly
one associated category Cn(v) ∈ Cn for each attribute an ∈ A .
Edge-based Fracturedness: We measure the number of edges in G
that connect cells with different associated attributes. This concept is

Fig. 4: We illustrate edge-based fracturedness with a Delaunay trian-
gulation shown in black, and a Voronoi partitioning with cell borders
shown in red. The cells are colored according to the categories of an
attribute. v1, v2 and v3 are vertices of the Delaunay triangulation. The
edge v1,v2 will not contribute to edge-based fracturedness, since it con-
nects cells representing the same category of a given attribute. Edge
v2,v3 contributes to edge-based fracturedness because it connects cells
representing different categories.

shown in Fig.4. We define an edge e ∈ E as {v1,v2} with v1,v2 ∈ V
and v1 ̸= v2. An edge contributes to fracturedness, if the category for
the analyzed attribute an and its associated categories in Cn differ for
the connected vertices, i.e., Cn(v1) ̸= Cn(v2) for {v1,v2} ∈ E. Edge-
based fracturedness is defined as Fedge : A 7→ [0,1] and calculated
using Eq.1.

Fedge(an) :=
|{v1,v2} ∈ E : Cn(v1) ̸= Cn(v2)|

|E|
with an ∈ A (1)

Component-based Fracturedness: This measure quantifies the num-
ber of continuous areas an attribute produces in the plot through its
categories. We show the concept of component-based fracturedness
in Fig.5. Each category c ∈ Cn defines an induced subgraph G[S(c)]
of G, with S(c)⊂V for all c ∈ Cn of an attribute an ∈ A . The induced
subgraph G[S(c)] is a graph with the vertices S(c) and the edges in E
with both of its vertices in S(c). We formally define S(c) for a category
c ∈ Cn in Eq.2.

S(c) := {v |v ∈V,Cn(v) = c} for c ∈ Cn of an ∈ A (2)

With this definition, a category defines a partition of V , i.e.,⋃
c∈Cn

S(c) =V and a vertex v ∈V can only have one category Cn(v),
thus

⋂
c∈Cn

S(c) = /0 for a given attribute an. Therefore, there exits
|Cn| subgraphs of G for attribute an ∈ A . Let ω(G) be the number of
connected components of any graph G. The component-based frac-
turedness is dependent on the number of connected components of
all subgraphs ω(G[S(c)]) for each c ∈ Cn (see s1 to s6 in Fig.5). We
define the sum of the number of components of all induced subgraphs
as Ω(an) for an attribute an ∈ A . Ω(an) is formally defined in Eq.3:

Ω(an) := ∑
c∈Cn

ω(G[S(c)]) with an ∈ A (3)

We can also quantify the fracturedness a single category contributes to
the overall measure. This allows us to differentiate categories forming
contiguous areas and highly fractured ones. The fracturedness fcomp(c)
of a single category c ∈ Cn is defined in Eq.4:

fcomp(c) :=
ω(G[S(c)])−1

Ω(an)
with c ∈ Cn of an ∈ A (4)

Component-based fracturedness is defined as Fcomp : A 7→ [0,1] and
calculated using Eq.5. It allows us to compare different attributes and
is an alternative measure to Fedge(an).

Fcomp(an) := 1− |Cn|
Ω(an)

with an ∈ A (5)
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Fig. 5: We describe component-based fracturedness with a Voronoi
partitioning with cell borders shown in red. The associated Delaunay
triangulation is shown in black. The cells are colored according to the
categories of an attribute. s1 to s6 are six components induced by an
attribute through the subgraphs associated with a category. Solid lines
connect each subgraph, while dashed lines are not part of any subgraph.
With six components Fcomp = 0.33 for the attribute (see Eq.5).

The sum of all component-based fracturedness values of individual
categories c ∈ Cn is equal to the fracturedness of the attribute an ∈ A .
We express this relationship in Eq.6:

Fcomp(an) = ∑
c∈Cn

fcomp(c) with an ∈ A (6)

A mathematical proof of the equivalence described in Eq. 6 can be
found in the supplementary material.

3.4 Interacting with Attributes and Subsets
Our prototype allows interactions on the attributes of the dataset shown
in the side panel and projected subsets.

Attribute Selection: Users can change the attribute visualized through
layout enrichment. We also show the outline for categories of a second
selected attribute (see Fig. 6). We add the borders of categories to
the foreground if another attribute is already selected and visualized
in the background. This visual cue does allow for the observation
of one main attribute and a second attribute, similar to the outline of
MosaicSets [69]. This introduces less clutter and thus requires less
effort to perceive. We initially used textures with different colors to
represent different categories. However, using textures of different
colors to fill each cell in the Voronoi portioning introduced excessive
clutter, and the interpretation of common regions was difficult.

Subset Selection: We allow for the selection and highlighting of groups
of subsets. Once the user has selected data items, we show the common
categories of the selection using Lasso selection and highlight all data
items outside of the selection with the same combination of categories
in the side panel on the left, similar to the proximity visualization for
continuous data proposed by Aupetit and Catz [6]. This interaction
enables cluster analysis since all common categories among the se-
lected items are highlighted (see side panel in Fig. 6). Thus, visual
groupings can be compared with respect to the categories and attributes
contributing to cluster cohesion. Additionally, all subsets matching
the common categories of the selection are also highlighted (see plot
in Fig.6). Together, this allows analysts to observe and judge group
cohesion along with the contributing attributes.

Attribute and Category Ordering: A user can select attributes of the
dataset listed on the side panel to change the attribute encoded in the
foreground and background of the plot. By default, attributes are sorted
by their edge-based fracturedness in ascending order, and categories are
ordered by their individual contributions to component-based fractured-
ness in ascending order, allowing for a focus on attributes forming clear
splits in the projection space. When selecting subsets (see previous

Fig. 6: Through user selection, the borders of a second attribute can
be added to the foreground of the plot, e.g., Purchaser Currently Living
In is shown in the background as the primary attribute, and Location of
Purchased Property is shown in the foreground.

paragraph), the lists of common attributes and distinct attributes are
also ordered similarly.

4 INTERPRETING THE CATEGORICAL DATA MAP

In the following, we perform a case study on cluster and attribute
analysis, using the Property Sales dataset [48] (see Fig.1) to show how
to interpret emerging patterns for cluster, outlier, and similarity analysis.
We chose this dataset because of its relative simplicity. However, it
lacks the complexity of large categorical datasets, which we will address
in an expert study (see Sec.5).
Cluster Analysis: There exist a total of Πn∈{1,...,|A |} |Cn| possible
data items, given that all combinations of attributes are allowed, re-
sulting in an exponential growth in the number of possible and unique
data items. Hence, we can assume that there are dependencies and
relationships among the categories contained in a dataset impacting
their distribution. This means that groups of subsets that share a set
of attributes should form perceivable structures (i.e., clusters) when
projected using DR methods. Thus, our approach benefits from and
leverages the sparsity of categorical data.

For the Property Sales dataset, there are ten clusters (see Fig.1 (1)).
There is a symmetric split along the center of the projection. Given the
size of this dataset, we can observe that the two attributes Purchaser
Currently Living In and Location of Purchased Property dominate
the appearance of the projection. The glyph sizes indicate that the
categories Private Propriety and Central often occur together while
{Private Propriety, Central, Condominium} is the largest unique
subset. Thus, we can see that most private property is purchased in
the central areas, and in this general group, the large majority are
condominiums.
Attribute Analysis: By encoding the attribute values in the back-
ground, we enable users to analyze the distribution of subsets in the
projection with respect to one or two attributes. For the Property Sales
dataset, we found that the attribute Purchaser Currently Living In
creates a clear and straight division between subsets (see Fig. 1 (2)).
We can also see a second level of grouping by the Location of Pur-
chased Property attribute forming a close to orthogonal split in the
projection, which can be spotted with our visualizations (see Fig.1 (3)
and Fig.6). Thus, Purchaser Currently Living In and Location of
Purchased Property are the primary attributes. This finding is sub-
stantiated when checking the side panel entry of the attribute Property
Type Purchased, which has three categories with low frequency. The
appearance of the partitioning depends a lot on the selected attributes.
When observing the layout enrichment, attributes present themselves
on a spectrum from a few clearly separated groups to intermingled
and highly fractured appearances. Property Type Purchased does
not contribute to elements’ clustering (or cluster cohesion) since most
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Dataset TW (↑) CT (↑) SC (↑) NS (↓) Avg. NH (↑) Med. NH (↑)
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Audiology [11] .58 .89 .83 .64 .90 .89 .29 .77 .69 .17 .09 .81 .89 .92 .92 .98 .98 .98
Mushroom [55] .96 .97 .91 .92 .93 .97 .78 .77 .79 .08 .09 .64 .89 .90 .84 .90 .92 .87
Titanic [26] .86 .86 .76 .84 .84 .81 .76 .75 .59 .07 .07 .28 .68 .68 .63 .74 .75 .60
Cyber-Security [86] .84 .87 .79 .83 .86 .81 .87 .82 .68 .04 .06 .30 .56 .55 .54 .66 .62 .58
Property Sales [48] .91 .89 .73 .86 .85 .81 .70 .66 .46 .09 .10 .24 .65 .65 .51 .76 .76 .39
HCI Study (1) [67] .84 .77 .71 .81 .79 .73 .72 .69 .61 .07 .07 .18 .59 .58 .58 .53 .53 .52
HCI Study (2) [67] 1.0 1.0 1.0 1.0 1.0 1.0 .86 .85 .89 .03 .03 .11 .56 .56 .56 .57 .57 .57

Table 1: We compare projections of MDS using the Overlap coefficient (MDS+O) and the Jaccard distance (MDS+J) to MCA by applying them to
seven real-world datasets. The MDS outperforms MCA for most datasets and quality metrics. In the case of the Audiology dataset with high category
overlap, usually present in datasets with many attributes, we found that MDS combined with the Jaccard distance outperforms both alternatives.
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Fig. 7: Two visualizations of the Titanic dataset [26]. A split Euler
diagram without the Age attribute (left) and an overlap reduced Parallel
Sets visualization (right) with very thin ribbons. Both have drawbacks with
a small dataset and do not scale with an increasing number of attributes.

groups contain subsets of the majority of its categories. Thus, the
areas of the categories are disjointed, which reflects the fact that most
property types are sold as both private and public property, as well as
most of the geographic locations.

5 EVALUATION

We qualitatively compare our Categorical Data Map to existing visual-
izations for categorical data and quantitatively compare our approach
to MCA used by Broeksema et al. [19]. Additionally, we performed an
expert study on two representative datasets with five data scientists.

5.1 Comparison to Euler Diagrams and Parallel Sets
For categorical data, each data point has exactly one category for each
attribute, while in Euler diagrams, the number of sets an element is
included in is not restricted, i.e., it could be in less. Thus, to truthfully
represent categorical data in Euler diagrams, there need to be Σai∈A |Ci|
sets, i.e., one set for each category of all attributes. Euler diagrams may
require the selection of specific subsets of attributes and, therefore, are
less suitable for exploratory data analysis. For highly intersecting sets,
automatic layout methods might not create a single diagram [62]. We
show an example of an automatically generated split Euler diagram for
the Titanic dataset in Fig.7 (left). The attribute Age was removed to
reduce the diagram’s complexity. The Titanic dataset requires ten sets.
However, even with eight sets, the visualization is disjointed. Parallel
Sets are alternative categorical sets visualization, combining principles
from stacked bars and parallel coordinate plots [15, 49]. Fig.7 (right)
shows the Titanic dataset in a Parallel Sets visualization, where the
readability is improved through overlap reduction. Small subsets are
represented as very thin ribbons on the lowest level, which can be hard
to perceive. Visualizing the Mushroom dataset with classical Parallel
Sets is not visually feasible since it will have 22 ribbon layers and 8123
subsets on the lowest level (see supplementary material). Alsakran et
al. [3] addressed this issue by only visualizing 2-dimensional subsets
in a modified Parallel Sets visualization. However, the relation between
2-dimensional subsets is lost. Thus, we argue that Euler diagrams and
Parallel Sets, as examples of established visualizations for categorical
data, do not scale with an increasing number of attributes.

5.2 Quantitative Evaluation of Projection Quality
We use five quality metrics commonly used in related work for DR to
evaluate and compare the quality of our categorical data projections [32].
The result of comparing MDS with Overlap coefficient (MDS+O) and
Jaccard distance (MDS+J) to MCA are shown in Tab. 1. We briefly
describe each metric below and use them to compare our MDS-based
method to MCA using seven real-world categorical datasets.
Trustworthiness (TW) [82] quantifies the proportion of points that
remain close in the lower-dimensional representation to assess how
accurately local patterns in the projection represent the data patterns.
This is linked to the occurrence of "false neighbors" in the protection.
Continuity (CT) [82] measures the ratio of points in the projection
that remain close in the original space. This is related to the "missing
neighbors" of a projected point.
Normalized Stress (NS) [41] quantifies how well the distances between
pairs of points are preserved when mapping from the original space to
the projected space. This measure should be as low as possible.
Shepard Diagram Correlation (SC) [31] measures the rank correla-
tion of all distances of the original and the projected space, assessing
the quality of distance preservation globally using Spearman’s ρ [74].
Neighborhood Hit (NH) [64] measures the proportion of a point’s
neighbors in the projection space that share the same label as the point
itself, averaged across all points in its neighborhood. This metric is
related to the separation of labeled data in the projection. In our case,
we evaluate every attribute as a set of labels. Thus, we calculate the
mean and median values of NH across all attributes of a dataset.

TW, CT, NH require a parameter k defining a neighborhood size.
We set k = 7, a commonly used value [31]. We found that our approach
generally outperforms MCA quantitatively. Additional measurements of
MDS with other distance measures, detailed descriptions of the quality
metrics, and datasets are provided in the supplementary material.

5.3 Qualitative Expert User Study
To evaluate the Categorical Data Map we performed a paired analytics
study [43]. We conducted an expert study with five data scientists, E1–
E5, with varying backgrounds. All participants were Ph.D. candidates
and students. All were male, and the age range was 25 to 30 years.
All experts had experience in the area of information visualization and
visual analytics. During the study, we asked the experts to verbalize
their thought process to capture it. The following studies are set up
using MDS projections of the Mushroom and Titanic dataset using the
Overlap coefficient (MDS+0). Tab.1 shows that these projections are
higher quality than MCA-based ones regarding most quality metrics.

All trials followed a predefined structure and took between 43 and
57 minutes. The study was conducted in German. The study started
with an introduction to the Categorical Data Map using the Property
Sales dataset by Hassan et al. [36] shown in Fig. 1 and included a
description of the square area glyph, layout enrichment, and interactions
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Fig. 8: Categorical Data Map visualizations of the Titanic dataset [26] using MDS and Overlap coefficient [77]. (1) The visualization shows six
clusters and two outliers. The largest cluster is the subset of Adult, Male, Perished (at the bottom). The background encoding shows that the
Survived and Sex attributes are relevant for this dataset, clearly separating the data items. For Sex, the separation is left and right. (2) For Survived,
the separation is bottom-right/top-left. (3) The Age dimension also yields a separation, while (4) Class shows no clear structure.

to introduce the expert to the prototype. After the introduction, the
experts had the opportunity to ask questions regarding our approach.

Titanic Dataset: The experts had to analyze the Titanic dataset [26]
using the Categorical Data Map shown in Fig.8. E1–E5 were able to
locate the largest subset {Male, Perished, Adult, Crew} by looking at
the visualization without any additional interaction (Fig.8 (1)). E1–E5
used Lasso selection to find and validate that the largest subset regarding
three attributes is {Male, Perished, Adult} (Fig.8 (2)). Additionally,
E1–E5 were able to find six clusters and two outliers. E1, E3, and E4
found that the outliers represent the subsets defined by the categories
{Perished, Child, Crew} (Fig.8 (3)). E1, E3, and E5 commented on
the high number of perished males and the large number of casualties
among the {Male, Crew}. E1–E5 used the layout enrichment to
navigate and reason about the location of subsets, including the Class
attribute (Fig.8 (4)). E2 commented on the close to orthogonal split in
the projection between Sex and Survived shown in Fig.8 (1) and (2).

Mushroom Dataset: E1–E5 had the opportunity to perform an open
exploration task and were only given the information that the dataset
is about mushrooms and that the class attribute indicates their poi-
sonousness. The glyph was replaced with a simple black dot to reduce
the visual complexity. E1–E5 perceived five clusters right at the outset.
E2 and E3 used the Lasso selection together with layout enrichment to
determine differentiating categories for cluster separation, e.g., evanes-
cent, large, and pendent for the ring-type attribute (Fig.9 (3)). E1–E5
found the poisonous outliers nested in the group representing edible
mushrooms (Fig.9 (1)) being poisonous mushrooms very similar to ed-
ible ones. E1–E5 found the general rule that mushrooms with an fishy
foul, musty, spicy or other unpleasant smells indicate a poisonous
mushroom (Fig.9 (2)). During the open exploration task, E1, E2, and
E3 found the rule without additional information. E4 and E5 needed
help to find the class and odor combination. However, E4 and E5
could deduce the rule by only interpreting the plot. E3, quickest in ex-
ploring the dataset, found that stalk-surface-below-ring is silky for the
majority of poisonous mushrooms and the stalk-surface-below-ring
is mostly smooth for edible ones (Fig.9 (4)).

General Comments: Before concluding the study, the participants
were asked to comment on their preferences for the available glyph
designs. E1, E2, and E4 preferred a circular glyph design (Fig.2 (c) and
(d)) over a square design. E3 and E5 preferred square glyph designs
(Fig.2 (a) and (b)). E1 and E3 found that the area-based glyphs are
inferior to the alternative designs for reading off precise subset sizes.
E1 mentioned as a drawback that the glyphs are not rotation invariant.
E1 commented that the layout enrichment is very useful for navigation
and orientation and helps to perceive the impact on category groups.
However, E1 also noted that the layout enrichment does not reflect
the ratio of data items with a given category. E3 mentioned a gen-
eral preference for the map metaphor by being helpful for orientation
among different subsets. E2 mentioned potential scalability issues with
the glyph for large datasets, e.g., for a high number of attributes, and
proposed semantic zoom as a potential option. E1–E5 commented that

ordering attributes according to their fracturedness was understandable
and useful. During the general questions at the end, E2–E4 freely
explored plots created with other distance measures and DR methods.
E3 commented that the result of MCA-based plots was hard to inter-
pret, noticing the disjointed layout enrichment and thus having larger
fracturedness. E1 mentioned issues with the encoding of categories,
such as the category North not being located north of the plot or the
category brown not having the color brown, and suggested being able
to select the color of a category manually.

6 DISCUSSION AND FUTURE WORK

In this section, we discuss the lessons-learned, reflect on the design
decisions, and discuss computational complexity and future work.
Visualizing Attributes and Categories: We initially used circular
glyphs as shown in Fig.2 (c) and (d), which had the benefit of using
the available space effectively since overlap minimization relative to
the radius is straightforward to implement. The subset size encoding
by the arc around the circle enables finer-grained distinction of sizes
since it offers more space. However, during the design phase, users
misinterpreted the circle segments as pie charts, a common method
for displaying categorical data. Thus, we decided to circumvent this
common misconception by using square-based representation for the
categorical subsets. However, three out of five experts preferred a
circular glyph design.

There are visual limitations to the number of dimensions and cat-
egories that our approach is able to support. The number of visually
distinguishable categories is limited by the number of square segments
that fit into the glyph, which is limited by the screen space. The num-
ber of attributes is limited by the number of colors, which have to be
distinguishable and memorizable. Thus, we suggest following Miller’s
Law [59] for the number of dimensions and attributes, which proposes
a maximum of seven plus or minus two. Alternatively, we suggest
interactions such as semantic zoom, e.g., removing attributes for which
all subsets have the same category after zooming in on a specific area.
Encoding of Subset Sizes: We evaluated four different visual encod-
ings for the size of a categorical data subset (see Fig.2). The area-based
glyph makes it easier to perceive subset sizes at a glance, and thus, a
user can spot the distribution of the dataset directly. Still, it suffers
from overlap, especially for tight clusters. Thus, there is a benefit to
applying methods to reduce overlap. We are able to mitigate the overlap
problem with the force-directed overlap reduction largely. Simplifying
the representation of a dot requires less space, but the assessment of
subset sizes requires interaction. It is possible to remove the subset size
information altogether. However, this may limit analysis tasks where
the subset sizes it not important, e.g., the Mushroom dataset. All glyph
designs benefit from a mouse-over mechanism that moves the currently
selected glyph to the top so that all attributes can be observed.
Encoding of Attributes Into the Background: Fig.8 shows that en-
coding an attribute into the visualization gives insight into the topology
of the projection. We could also show the benefit of encoding multiple
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Fig. 9: Categorical Data Map visualizations of the Mushroom dataset [55] using the MDS and Overlap coefficient. (1) Two poisonous mushrooms
very similar to edible mushrooms. (2) Comparing class and odor reveals that the poisonous outlier has a pungent odor. Continued analysis reveals
that mushrooms with an unpleasant smell are poisonous. (3) After the selection of a cluster, the ring-type is identified as a defining characteristic for
the cohesion of visible clusters and is used as a property for the classification of mushrooms. (4) Selecting two poisonous clusters, reveals that the
vast amount of poisonous mushrooms are silky at the stalk-surface-below-ring, while there exist very few silky mushrooms that are edible.

attributes into the background to allow for a more complex represen-
tation of the topology. We found that the number of categories of an
attribute weakly influences the fracturedness of an attribute. However,
the main factor is the number of subsets containing the attribute, i.e., an
attribute with two categories and an occurrence roughly equal among all
subsets will yield a low fracturedness for that attribute. With increased
imbalance between the categories, the fracturedness may increase if
other more balanced attributes are present.

We discussed the use of weighted Voronoi diagrams [5] to better re-
flect the subset size in the background encoding. The use of a weighted
Voronoi diagram will conflict with local cluster patterns; more specif-
ically, for imbalanced datasets, the area of one Voronoi cell extends
below the point of its neighbors, requiring restrictions on the range
weights. This behavior makes the layout enrichment hard to interpret
since points are placed inside or close to an area representing a category
they do not belong to. For datasets with only unique entries, the weight
Voronoi diagram will be identical to the regular Voronoi diagram. To
organize subsets, we also considered Voronoi Treemaps [10]. However,
Voronoi Treemaps require a hierarchical structure, just like regular Tree
Maps [71] and, thus, cannot be applied to categorical data without
additional information to derive a hierarchy of attributes.

Computational Complexity: The number of data records n poses
potential limitations. The time complexity of projecting data is de-
termined by the DR methods. However, since categorical data sets
are sparse, as discussed in Sec.4, the number of projected subsets is
significantly lower than that of data records. The Voronoi diagram
calculation and the corresponding Delaunay triangulation are both in
O(n log(n)) [9]. The time complexity of calculating the fracturedness
measures depends on the number of vertices and edges of the Delaunay
triangulation, which will have n vertices and 3n−3−h edges, where h
is the number of vertices on the convex hull. The time complexity of
calculating edge-based fracturedness is based on enumerating all edges
of the Delaunay triangulation and has a time complexity of O(|E|).
The time complexity of calculating component-based fracturedness is
dependent on the algorithm for determining the number of components.
We use a depth-first search-based approach with time complexity of
O(|V |+ |E|). Thus, the dimensionality reduction method employed
poses the highest contribution to the time complexity, O(n3) for MDS.

Future Work: We found that Voronoi cells can overrepresent the
amount of data associated with a specific category. Thus, there is a
need for a new layout enrichment method following these constraints:
(1) The global area associated with one category should be relative
to the occurrence in the dataset (data-ink ratio), (2) the extent of in-
dividual category areas should remain close to their projected data
point positions, (3) where meaningful (e.g., among clusters), the lay-
out enrichment should visually enclose the data points with the same
category if the data-ink ratio allows. The expert study showed that

the color assignment for foreground and background colors could be
improved. We suggest assigning attributes to a few sets of colors based
on an exploration phase. Later in the analysis, we require one color
set for the attribute used in the background, one for the foreground
using a distinctive palette, and one for the attribute under focus by the
user. All the other attributes would be assigned a neutral color (e.g.,
grey). In this paper, we studied the use of MDS for categorical data
analysis. However, following the approach of encoding categorical data
into distances, other DR methods could be used (e.g., t-SNE [80] or
UMAP [56]). These can be evaluated and compared quantitatively, fol-
lowing the evaluation presented in this paper. We think that the concept
of fracturedness can be transferred to high-dimensional space when
analyzing categorical data. Such a measure can be used to compare
the low- and high-dimensional representations and provide a quality
measure for projections of categorical data.

7 CONCLUSION

We presented a novel projection-based visualization method to address
the need for similarity-based analysis techniques for categorical data.
We leverage distance relations based on set intersections to create en-
hanced and interactive glyph-based scatterplot-like visualizations called
the Categorical Data Map. We visualized attributes and categories by
calculating a Voronoi partitioning and coloring the cells according to
the category of the associated attribute. Our method allows for ex-
ploring the categorical data space through segmentation, enabling the
orientation along an automatic or user-selected attribute. For automatic
selection, we rank-order attributes along a visual property we defined
as fracturedness measures. We quantitively evaluated different distance
measures for the projection of categorical data with MDS, suggesting
that the Overlap coefficient and Jaccard distance yield results outper-
forming MCA. Through a case study, we showed that our Categorical
Data Map can support the identification of similar subsets and clusters,
as well as the detection of attributes with a strong influence on the
topology of the embedding. In an expert study, we were able to confirm
that our approach facilitates the analysis of categorical data, especially
for large datasets, by grouping similar subsets while, through layout
enrichment, visualizing the distribution of categories of an attribute.
We published a demonstrator and our results online so that users can
interactively experiment with our approach and build upon our results.
We conclude that the Categorical Data Map effectively analyzes large
categorical datasets, especially in exploratory scenarios.
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