
© 2021 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: 10.1109/VizSec53666.2021.00014

VulnEx: Exploring Open-Source Software Vulnerabilities in Large
Development Organizations to Understand Risk Exposure

Frederik L. Dennig1, Eren Cakmak1, Henrik Plate2, and Daniel A. Keim1

1University of Konstanz, Germany* 2SAP Security Research, France†

Figure 1: VULNEX is a tool for the investigation of exposure to open-source software vulnerabilities on an organization-wide level.
The tool shows repositories, modules, libraries, vulnerabilities in a tree representation (A), and meta-information about each entry
(B), such as the CVSS score. We can see that the ”low-marmoset” repository is exposed to severe vulnerabilities, three critical and
seven high. Two of the critical vulnerabilities are originating from the activemq-all indicating that the library should be updated swiftly.

ABSTRACT

The prevalent usage of open-source software (OSS) has led to an
increased interest in resolving potential third-party security risks
by fixing common vulnerabilities and exposures (CVEs). However,
even with automated code analysis tools in place, security analysts
often lack the means to obtain an overview of vulnerable OSS reuse
in large software organizations. In this design study, we propose
VULNEX (Vulnerability Explorer), a tool to audit entire software de-
velopment organizations. We introduce three complementary table-
based representations to identify and assess vulnerability exposures
due to OSS, which we designed in collaboration with security an-
alysts. The presented tool allows examining problematic projects
and applications (repositories), third-party libraries, and vulnerabili-
ties across a software organization. We show the applicability of our
tool through a use case and preliminary expert feedback.

Keywords: Software security visualization, application security,
open-source, vulnerability exposure analysis, software auditing.

1 INTRODUCTION

The extensive usage of open-source software (OSS) nowadays pro-
motes a straightforward integration of common software features
into existing applications [1,20]. However, software reuse also poses
a significant risk as software with disclosed vulnerabilities is often
extensively reused, affecting various applications across whole orga-
nizations [7]. For instance, the Equifax data breach in 2017 resulted
from a missed OSS package update and led to the disclosure of the

*e-mail: {frederik.dennig, eren.cakmak, keim}@uni-konstanz.de
†e-mail: henrik.plate@sap.com

private data of over 145 million U.S. citizens [16]. Hence, an organi-
zation’s governance or audit system must identify the organization’s
overall exposure to OSS vulnerabilities.

Developers and security analysts regularly utilize automated code
analysis tools to identify vulnerabilities and investigate the mitiga-
tion of OSS security risks. For example, static [25] and dynamic
code analysis [21, 22] are applied to execute the developed code and
detect inherent vulnerabilities. However, such code analysis tools
heavily differ in their detection capabilities. They often only store the
vulnerability metadata as text files that do not meet software develop-
ers’ basic requirements, such as prioritizing the most severe vulnera-
bilities. Assessing the impact of software vulnerabilities is essential
for organizations since the effects of exposures can vary significantly.
Further, code analysis tools are usually used for single software ap-
plications and do not show the impact of OSS vulnerabilities across
multiple applications in whole software organizations. Additionally,
it is crucial to evaluate the quality of libraries and other dependencies
if they originate from another source, such as that the source can be
trusted [24], and that OSS developers are swift in addressing vulner-
abilities [2]. The mentioned points are crucial for deciding whether
a software development organization should use an OSS library.

We propose VULNEX (Vulnerability Explorer), a new tailored
design to explore and assess the mitigation of OSS vulnerabilities
for auditing and governance of whole software development orga-
nizations looking beyond individual applications and teams. In our
user-centered design study, we designed three complementary table-
based representations to identify and assess vulnerabilities across
various applications. We demonstrate the applicability of our ap-
proach through use cases and initial expert feedback. VULNEX is
open-source1 and accessible online2. With this work, we present a
first study to improve the analysis and mitigation of software vul-
nerabilities, especially from an organization-wide perspective. In

1https://github.com/dbvis-ukon/vulnex
2https://dennig.dbvis.de/vulnex

1

https://doi.org/10.1109/VizSec53666.2021.00014
https://github.com/dbvis-ukon/vulnex
https://dennig.dbvis.de/vulnex


© 2021 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VizSec53666.2021.00014

summary, the primary contributions of this paper are: (1) A design
study with problem characterization, findings, and lessons learned
for the visual analysis of OSS vulnerabilities. (2) The interactive
VULNEX analysis tool to interactively explore critical vulnerabili-
ties. With this work, we hope to improve the analysis and mitigation
of software vulnerabilities by addressing the need for an analysis
tool for auditing entire software development organizations.

2 RELATED WORK

Software visualizations provide a comprehensive overview of com-
plex systems, such as program structures, execution behavior, and
the development process [10]. These visualizations are also useful
to investigate security aspects, e.g., SecSTAR [11] automatically
generates execution diagrams to examine, debug, and test software
applications. For an overview of software visualization research, re-
fer to the reviews of Wagner et al. [26], and Chotisarn et al. [9].

In software security visualization, some approaches for vulnera-
bility exploration have been proposed. Harrison et al. [14] proposed
the Nessus vulnerability visualization (NV) to discover and analyze
network vulnerabilities of Nessus scans. The system simplifies and
displays vulnerability assessment results to support security analysts,
using zoomable treemap visualization with linked histograms. In a
similar context, Angelini et al. [5] proposed Vulnus, which aims to
increase situational awareness of security managers by visually an-
alyzing vulnerability spreads in computer networks. Furthermore,
CVExplorer [19] is a visual analytics system for analyzing vulner-
ability reports and enhancing network security using three linked
views. These vulnerability systems differ from our approach since
they primarily focus on exposing computer network vulnerabilities.
Moreover, Goodall et al. [13] proposed a system to explore vulnera-
bilities and code weaknesses in software development. The goal is
to help users understand their code’s security status by displaying
code vulnerabilities using an aggregated block metaphor for each
file. Goodall et al. [13] approach focuses on identifying false posi-
tives, which we reduce in our application by checking whether third-
party vulnerabilities are reachable. Assal et al. [6] presented Cesar,
a collaborative code analysis system to reduce vulnerabilities and
improve code security. The authors utilize a treemap visualization to
help security experts and developers collaboratively explore static-
code analysis methods’ results. The treemap visualization displays
a software package, and each leaf node shows a class file. Angelini
et al. [4] presented a visual analytics approach to assist users in ex-
ploring program execution, describing in a use case of the detection
of single vulnerabilities. However, the system is mainly targeted
to investigate symbolic execution engine data. Recently, Alperin et
al. [3] presented a study for the interpretable visual assessment of
vulnerabilities. In their study, the authors focus on local explana-
tions for predictive vulnerability analysis.

In summary, the listed approaches focus on exploring network
vulnerabilities and improving the code security of individual soft-
ware packages, such as investigating potential false positives. In con-
trast, we propose an initial approach that provides an overview of en-
tire software development organizations. Our design study focuses
mainly on the visual analysis of OSS vulnerabilities by supporting
auditing teams in assessing OSS dependencies through table-based
views to evaluate vulnerabilities in large software organizations.

3 PROBLEM STATEMENT

The main goal of this work is to design visualizations to explore se-
curity risks in large software organizations. We gathered knowledge
about the domain and user requirements in three interviews with two
security analysts and a software developer from SAP. The interviews
provided valuable insight into the daily workflows and challenges
faced by security analysts regarding vulnerability assessment.
Application Background: The essential user task is to understand
the overall risk exposure of large development organizations, e.g.,

commercial software vendors or open-source foundations, due to the
consumption of open-source components in a considerable number
of development projects or applications. During software develop-
ment, projects are regularly scanned with code analysis tools. At
SAP, the developers regularly utilize Eclipse Steady3 [22], which
supports static and dynamic analysis to detect and assess vulnerabil-
ities. Eclipse Steady scans projects for Common Vulnerabilities and
Exposures (CVE), which have a unique identifier in the National Vul-
nerability Database. Eclipse Steady displays the Common Vulnera-
bility Scoring System (CVSS) score to indicate the severity of identi-
fied security vulnerabilities. However, the CVSS score only captures
the vulnerability severity. Organizations require complementary in-
formation from other sources to evaluate the general software quality
of the most-used libraries and determine whether they have sufficient
quality. The identification of low-quality libraries is a prerequisite
for follow-up decisions. However, the visual exploration of applica-
tions, consumed libraries, and related vulnerabilities on an organiza-
tional level are not supported by any of the tools available to date.
Requirements: From the interviews and further discussions with
domain experts, we derived the following requirements for our tool
aimed at the organization-wide analysis of software vulnerabilities.
(R1) Repositories - The tool should provide views to detect vulnera-
ble repositories and projects to apply countermeasures, such as train-
ing weaker teams and reallocating resources. For this, repositories
need to be represented in a comparable way to estimate relevance
and understand how they compare against each other.
(R2) Libraries - Software projects potentially depend on vulnerable
libraries, which have to be updated. Thus, the tool needs to convey
the overall exposure and allow for the inspection of specific bugs.
(R3) Vulnerabilities - Vulnerabilities need to be explored to address
specific exploited known vulnerabilities, e.g., OSS vulnerabilities
prominently discussed in mainstream media, where organizations
may be required or expected to make a statement whether and which
of their applications are affected. Thus, the tool needs to enable
users to find specific bugs with a high-security risk.
(R4) Vulnerability Severity - Vulnerabilities can have different effects
depending on the severity and how many projects the origin is, and
thus need to be prioritized accordingly. Therefore, the tool needs to
show the impact of specific bugs on the organization’s codebase.

4 TABLE-BASED VULNERABILITY EXPLORATION

In a two-year process, we applied the guidelines by Chen et al. [8]
to perform our design study. Our tool covers the pipeline from scan-
ning to repairing or mitigating a vulnerability. The overall work-
flow of VULNEX follows the KDD pipeline [12]. The workflow of
VULNEX: (1) The security analyst starts a scan of the source code
of all software projects. (2) He then selects a type of analysis tar-
get, i.e., repositories, libraries, or vulnerabilities, choosing between
overviews. (3) Then, the analyst defines criteria he is interested in,
i.e., the number or severity of a bug allowing for filtering. (4) The an-
alyst observes the findings and determines their relevance by drilling
down to the specific issue. (5) In case of a relevant finding, the ana-
lyst can start a repair or mitigation process; this is supported by the
detailed report of Eclipse Steady. Thus, we follow Shneidermans’
mantra: Overview first, zoom and filter, then details-on-demand [23].
In Fig. 1 we show the dependency tree (A), allowing users to explore
the hierarchy of the software project and the vulnerability informa-
tion (B) to give insight into the exposure to vulnerabilities.

4.1 Dependency Tree
The dependency tree representation in Fig. 1 (A) shows the relation-
ship of all repositories , modules , libraries , and bugs

. VULNEX is inspired by the tree+table approach by Nobre et
al. [17, 18]. We choose this because tree structures are common and

3https://github.com/eclipse/steady

2

https://doi.org/10.1109/VizSec53666.2021.00014
https://github.com/eclipse/steady


© 2021 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VizSec53666.2021.00014

known by domain experts and allow us to leverage the hierarchy in-
herent in software projects while supplying additional information
about vulnerabilities, keeping a high level of detail. The tree repre-
sentation allows for the analysis of vulnerabilities in three ways.
Repository-centered: → → →
This order of levels allows for a repository-focused analysis. Starting
with a repository, then showing information about modules and
sub-modules, enabling analysts to locate severe vulnerabilities. If
a module uses a vulnerable library, this can be quickly detected.
Finally, we show the vulnerabilities caused by a library, allowing for
detailed analysis and estimation of the impact.
Library-centered: → → →
Beginning with a library, displaying its vulnerabilities allows ana-
lysts to estimate the risk associated with a library. If a repository
uses a vulnerable library, this repository is shown on the next level.
Finally, we present the associated module or sub-module exposed to
the CVE of that library, allowing for inspecting it in detail.
Bug-centered: → → →
Starting with a CVE, then showing the affected library allows ana-
lysts to find specific bugs quickly. If a repository uses a vulnerable
library, this repository is shown on the next level. Finally, we dis-
play the associated module or sub-module impacted by the CVE of
that library, allowing for detailed analysis.

4.2 Vulnerability Information
We provide additional information about the vulnerabilities of a
repository, module, and libraries, shown in Fig. 1 (B), through which
we support the detection and analysis of critical vulnerabilities, as
well as the assessment of the quality of OSS dependencies, e.g.,
LGTM grade and score. The column shows the number of entities
on the next level of the tree, indicating the number of related entities
on the following hierarchy level. The column shows the number
of vulnerabilities a repository, module, or library is exposed to. The
absence of an element indicates that the information is not available
or applicable to the entity of the row.
CVSS Score: The CVSS score column shows the
number of CVEs with a given score. We use the
common classification: Low (0.1 - 3.9), Medium
(4.0 - 6.9), High (7.0 - 8.9), Critical (9.0 - 10.0),
which is also mirrored in the coloring from the
National Security Database4. The number in each square encodes
the number of occurrences in the given range.
To inspect the distribution of CVSS
scores in a more finely-grained way, we
offer a representing of each CVE and its CVSS score with its pre-
cise value. It also indicates the range of CVSS scores.
CVE Matrix: The CVE matrix indicates the pres-
ence of a specific vulnerability. Each column shows
the presence of a CVE with dark gray squares,
while a light gray square indicates the absence of
the CVE. We adopted this encoding from Nobre
et al. [18]. Columns can be added and removed to
highlight specific CVEs dependent on the user. The CVE matrix
allows users to get an overview of the presence of specific vulner-
abilities in repositories, modules, and libraries. It also enables the
analysis of the co-occurrence of CVEs.
Meta-Information: We provide additional
information from LGTM5, a code analy-
sis platform, and GitHub6. The columns
describe the LGTM grade, LGTM score,
GitHub issues, GitHub stars, GitHub watch-
ers. The LGTM grade and score provide an additional measure for

4https://nvd.nist.gov/
5https://lgtm.com/
6https://github.com/

the quality of software artifacts. The number of GitHub issues pro-
vides an indicator for active development, while the GitHub stars
and watchers provide an indicator for the popularity of a repository.
Dependency Graph: The user can view
the structure of a software project by
clicking . The repository is shown at
the top, its modules and libraries in the
middle, and the bugs at the bottom.

4.3 Filter and View Options
Based on expert feedback, we offer filter options to reduce the
number of entries in the table and allow for a focused analysis. The
user can search for a name of a given repository, library, or bug. We
enable users to filter by the minimum and the maximum number of
dependencies, vulnerabilities, and the CVSS score. Users can hide
all repositories and modules that do not contain any vulnerability, as
well as CVEs without a CVSS score.

5 EVALUATION

5.1 Use case: Eclipse GitHub Repositories
We analyze all public GitHub repositories of the Eclipse Founda-
tion7 that are Apache Maven8 projects in the Java9 programming
language. All projects are scanned using the Eclipse Steady tool.
We scanned these repositories from January 21 to February 4, 2020.
This yields a total of 295 projects that we analyze for common li-
braries and vulnerabilities. We replace the original repository and
module names with pseudonyms not to blame the individual projects.
At SAP, the analysis of an individual application follows a defined
process, starting from the automated scanning with tools like Eclipse
Steady to discover vulnerable open-source dependencies, the assess-
ment of findings by a security expert, and finally, depending on
the assessment result, the remediation of the vulnerability or the
dismissal of the finding. However, open-source software analysis
across multiple applications for an entire organization does not fol-
low a defined process. To show the usefulness of VULNEX we ana-
lyze the gathered data to answer the following four questions. Ques-
tions (Q1-Q3) are examples for exploratory analysis, while (Q4) ad-
dresses a need when vulnerabilities in open-source components get
a lot of public attention, even in mainstream media. In such cases,
commercial vendors like SAP are expected to state to what extent
and which of their applications are affected by a given vulnerability.
Thus, we include (Q4) as a search task.
(Q1) Which repositories contain most severe vulnerabilities?
Security analysts utilize the Repository Table to analyze all reposito-
ries, depicted in Fig. 1. They find the ”low-marmoset” repository,
which has three critical bugs. We can see that all critical vulnera-
bilities are in the ”satisfactory-haddock” module by expanding the
entry. They inspect the module and see that the tomcat-embed-core
library contains CVE-2018-8014 and activemq-all contains CVE-
2018-1270 and CVE-2018-1270. They find that all three CVEs are
critical, which should be addressed promptly.
(Q2) Which dependencies contain severe vulnerabilities and are
often used across different applications?
The security analysts use the Library Table (see Fig. 2). They sort
the table by the most severe vulnerability. The libraries activemq-
all, org.apache.lucene.queryparser, spring-data-commons, jgroups,
groovy-all, and tomcat-embed-core all contain critical bugs.
(Q3) Which severe vulnerabilities are present?
Using the Bug Table, the analysts find that eight critical bugs
(see Fig. 3) are present, one in activemq-all affecting 20 repositories,
one in org.apache.lucene.queryparser affecting 14 repositories, one

7https://github.com/eclipse
8https://maven.apache.org/
9https://docs.oracle.com/en/java/index.html

3

https://doi.org/10.1109/VizSec53666.2021.00014
https://nvd.nist.gov/
https://lgtm.com/
https://github.com/
https://github.com/eclipse
https://maven.apache.org/
https://docs.oracle.com/en/java/index.html


© 2021 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VizSec53666.2021.00014

Figure 2: The analyst detects the most vulnerable libraries. activemq-
all contains one low, 14 medium, three high, and two critical severity
vulnerabilities, affecting 20 repositories.

in spring-data-commons affecting seven repositories, one in jgroups
affecting five repositories, two in groovy-all affecting seven repos-
itories, and one in tomcat-embed-core affecting eight repositories.
They remark that these six libraries should be updated and fixed or
replaced swiftly since they contain critical vulnerabilities.
(Q4) Are specific vulnerabilities present in any of the projects?
Analysts searched for the oldest bug for the severities medium, high,
and critical. For this task, they use the Bug Table. CVEs encode the
years that they were detected. To find the oldest unfixed bug, they
searched for the different years before 2019. They found CVE-2009-
2625, a medium severity bug, present in org.apache.xerces, which
affects 27 repositories. The oldest high severity bug they found was
CVE-2013-1768 in openjpa-asm-shaded, affecting three repositories
and CVE-2015-3253, a critical bug, affecting seven repositories.

5.2 Preliminary User Feedback
We conducted an initial preliminary user feedback session with three
software security analysts from SAP. All three participants (P1–P3)
have five to ten years of experience in software security and work
in dedicated security teams. Two participants support developers of
mature applications regarding software security, including assessing
the relevance and severity of vulnerabilities in open-source compo-
nents. One participant acted as program manager for open-source se-
curity and DevSecOps, determining requirements, developing tools,
and standardizing the secure consumption and publication of open-
source components at SAP. We adopted the pair analytics guidelines
of Kaastra and Fisher [15] to structure our interviews conceptually.
During the one-hour interviews, we gathered regular user tasks, re-
lated employed visual interfaces, familiarity with information visual-
ization for cyber-security, and afterward reviewed and compared in a
live session their initial expectations to the proposed VULNEX tool.

All three participants approved the usefulness of VULNEX to
visually explore the use of open-source libraries in large software
organizations. P1 and P2 appreciated that the tool displays how
often libraries and their potential vulnerabilities are used in the
whole organization. P3 liked that the CVE matrix displays the top
five bugs in the organization as it highlights the affected packages,
including other prevalent vulnerabilities with their CVSS scores.
Overall, all participants believed that VULNEX tool helps explore
software organizations’ vulnerabilities from different perspectives,
such as in repository, library, and bug table views.

The participants expressed some concerns and outlined some
shortcomings of our tool. P1 suggested adding additional informa-
tion about the open-source libraries to the tool, such as short de-
scriptions of the main functionality and purpose of the library. The
participant argued that keeping track of each library’s functionality
without such additional information remains challenging due to the
sheer number of 3rd party libraries. P2 emphasized that the current
visual representations might not scale to large-scale organizations,
e.g., organizations with more than 1000 repositories. P2 also pro-
posed to enable the annotation of individual repositories, libraries,

Figure 3: The analyst found eight critical vulnerabilities. CVE-2018-
1270 affects 20 repositories and has a critical severity.

and bugs. Such annotations let analysts search for particular vulner-
abilities and guide the auditing team to potential known solutions.
P3 emphasized that his focus is heavily on vulnerabilities with criti-
cal CVSS scores above 9.0 that need to be resolved within several
hours. Therefore, P3 suggested focusing on such vulnerabilities and
recommending appropriate counter-measures. All participants sug-
gested including potential solutions to resolve the vulnerabilities.

6 DISCUSSION AND CONCLUSION

We found that three security experts approved the usefulness of
VULNEX. The experts found the different task-focused views useful.
We learned that more detailed representations were less preferred.
The domain experts had an easier time working with the categories
low, medium, high and critical, rather than the precise values of the
heatmap visualization. The CVE matrix gives a helpful overview of
specific vulnerabilities. All vulnerability analysis tools at SAP focus
on individual applications. Thus, we present VULNEX supporting
organization- and enterprise-wide decision making. In terms of scal-
ability, we performed our analyses on all public GitHub repositories
of Eclipse Foundation. Therefore, we argue that VULNEX can be
used for large software organizations since few organizations have
more projects than the Eclipse Foundation.

We plan to address the feedback from the security experts by in-
cluding a method to annotate repositories, modules, libraries, vul-
nerabilities and provide additional information for each item which
could be taken from libraries.io or comparable online services. We
also plan to include the temporal component, analyzing multiple
”snapshots” to compare projects and understand how the organiza-
tion’s risk exposure develops over time. Another goal is to extend
VULNEX for the assessment of libraries before choosing a specific
one and provide a feedback loop to inform the open-source commu-
nity and add the vulnerability information to the original repository.
We also plan to evaluate VULNEX with experts external to the de-
sign process. Our approach is transferable to other organizations and
open-source vulnerability analysis tools, but VULNEX is currently
limited to the import and processing of scan results from Eclipse
Steady allowing for the analysis of Java and Python code.

Determining the impact of vulnerabilities on software organiza-
tions is challenging due to the missing aggregation of software anal-
ysis results. As a solution, we propose the VULNEX (Vulnerability
Explorer) tool, which we designed in a user-focused design process,
which allows analysts to detect severe and relevant vulnerabilities
and determine impacted libraries, modules, and repositories.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. This
project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
830892.

4

https://doi.org/10.1109/VizSec53666.2021.00014


© 2021 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VizSec53666.2021.00014

REFERENCES

[1] State of the software supply chain (2020). Sonatype Inc., Tech-
nical Report, 2020. https://de.sonatype.com/resources/

white-paper-state-of-the-software-supply-chain-2020,
last accessed 2021-06-24.

[2] S. Akatsu, A. Masuda, T. Shida, and K. Tsuda. A study of quality
prediction for large-scale open source software projects. Journal of
Artificial Intelligence Research, 10(1):34–42, 2021. doi: 10.5430/air.
v10n1p34

[3] K. B. Alperin, A. B. Wollaber, and S. R. Gomez. Improving inter-
pretability for cyber vulnerability assessment using focus and context
visualizations. In J. Kohlhammer, M. Angelini, C. Bryan, R. R. Gómez,
and N. Prigent, eds., 17th IEEE Symposium on Visualization for Cyber
Security, pp. 30–39. IEEE, 2020. doi: 10.1109/VizSec51108.2020.00011

[4] M. Angelini, G. Blasilli, L. Borzacchiello, E. Coppa, D. C. D’Elia,
C. Demetrescu, S. Lenti, S. Nicchi, and G. Santucci. SymNav: Visually
assisting symbolic execution. In 16th IEEE Symposium on Visualization
for Cyber Security, pp. 1–11. IEEE, 2019. doi: 10.1109/VizSec48167.
2019.9161524

[5] M. Angelini, G. Blasilli, T. Catarci, S. Lenti, and G. Santucci. Vulnus:
Visual vulnerability analysis for network security. IEEE Transactions
on Visualization and Computer Graphics, 25(1):183–192, 2019. doi:
10.1109/TVCG.2018.2865028

[6] H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual representation
of source code vulnerabilities. In D. M. Best, D. Staheli, N. Prigent,
S. Engle, and L. Harrison, eds., 13th IEEE Symposium on Visualization
for Cyber Security, pp. 1–8. IEEE Computer Society, 2016. doi: 10.
1109/VIZSEC.2016.7739576

[7] B. L. Bullough, A. K. Yanchenko, C. L. Smith, and J. R. Zipkin. Pre-
dicting exploitation of disclosed software vulnerabilities using open-
source data. In R. M. Verma and B. M. Thuraisingham, eds., Proceed-
ings of the 3rd ACM on International Workshop on Security And Pri-
vacy Analytics, pp. 45–53. ACM, 2017. doi: 10.1145/3041008.3041009

[8] M. Chen and D. S. Ebert. An ontological framework for supporting the
design and evaluation of visual analytics systems. Computer Graphics
Forum, 38(3):131–144, 2019. doi: 10.1111/cgf.13677

[9] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu,
and W. Chen. A systematic literature review of modern software
visualization. Journal of Visualization, 23(4):539–558, 2020. doi: 10.
1007/s12650-020-00647-w

[10] S. Diehl. Software Visualization - Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, 2007. doi: 10.1007/978-3-540-
46505-8

[11] W. Fang, B. P. Miller, and J. A. Kupsch. Automated tracing and visual-
ization of software security structure and properties. In D. Schweitzer
and D. Quist, eds., 9th International Symposium on Visualization for
Cyber Security, pp. 9–16. ACM, 2012. doi: 10.1145/2379690.2379692

[12] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process
for extracting useful knowledge from volumes of data. Communications
of the ACM, 39(11):27–34, 1996. doi: 10.1145/240455.240464

[13] J. R. Goodall, H. Radwan, and L. Halseth. Visual analysis of code secu-
rity. In J. Gerth, ed., 7th International Symposium on Visualization for
Cyber Security, pp. 46–51. ACM, 2010. doi: 10.1145/1850795.1850800

[14] L. Harrison, R. Spahn, M. D. Iannacone, E. Downing, and J. R. Goodall.
NV: Nessus vulnerability visualization for the web. In D. Schweitzer
and D. Quist, eds., 9th International Symposium on Visualization for
Cyber Security, pp. 25–32. ACM, 2012. doi: 10.1145/2379690.2379694

[15] L. T. Kaastra and B. D. Fisher. Field experiment methodology for
pair analytics. In Proceedings of the Fifth Workshop on Beyond Time
and Errors: Novel Evaluation Methods for Visualization, pp. 152–159.
ACM, 2014. doi: 10.1145/2669557.2669572

[16] T. Moore. On the harms arising from the Equifax data breach of 2017.
International Journal of Critical Infrastructure Protection, 19:47–48,
2017. doi: 10.1016/j.ijcip.2017.10.004

[17] C. Nobre, N. Gehlenborg, H. Coon, and A. Lex. Lineage: Visualizing
multivariate clinical data in genealogy graphs. IEEE Transactions on
Visualization and Computer Graphics, 25(3):1543–1558, 2019. doi: 10.
1109/TVCG.2018.2811488

[18] C. Nobre, M. Streit, and A. Lex. Juniper: A tree+table approach to

multivariate graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 25(1):544–554, 2019. doi: 10.1109/TVCG.2018.
2865149

[19] V. Pham and T. Dang. CVExplorer: Multidimensional visualization for
common vulnerabilities and exposures. In N. Abe, H. Liu, C. Pu, X. Hu,
N. K. Ahmed, M. Qiao, Y. Song, D. Kossmann, B. Liu, K. Lee, J. Tang,
J. He, and J. S. Saltz, eds., IEEE International Conference on Big Data,
pp. 1296–1301. IEEE, 2018. doi: 10.1109/BigData.2018.8622092

[20] M. Pittenger. Open source security analysis - the state of open
source security in commercial applications. Black Duck Software,
Technical Report, 2016. https://www.vojtechruzicka.com/

bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf, last ac-
cessed 2021-06-21.

[21] H. Plate, S. E. Ponta, and A. Sabetta. Impact assessment for vulner-
abilities in open-source software libraries. In R. Koschke, J. Krinke,
and M. P. Robillard, eds., 2015 IEEE International Conference on Soft-
ware Maintenance and Evolution, pp. 411–420. IEEE Computer Soci-
ety, 2015. doi: 10.1109/ICSM.2015.7332492

[22] S. E. Ponta, H. Plate, and A. Sabetta. Detection, assessment and
mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering, 25(5):3175–3215, 2020. doi: 10.1007/s10664-020
-09830-x

[23] B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, pp. 336–343. IEEE Computer Society, 1996. doi:
10.1109/VL.1996.545307

[24] A. S. Sohal, S. K. Gupta, and H. Singh. Trust in open source software
development communities: A comprehensive analysis. International
Journal of Open Source Software and Processes, 9(4):1–19, 2018. doi:
10.4018/IJOSSP.2018100101

[25] I. Sommerville. Software Engineering. it : Informatik. Addison-Wesley,
Harlow, England, 9 ed., 2010.

[26] M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind, D. A. Keim, and
W. Aigner. A survey of visualization systems for malware analysis. In
R. Borgo, F. Ganovelli, and I. Viola, eds., 17th Eurographics Confer-
ence on Visualization, pp. 105–125. Eurographics Association, 2015.
doi: 10.2312/eurovisstar.20151114

5

https://doi.org/10.1109/VizSec53666.2021.00014
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://de.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.5430/air.v10n1p34
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec51108.2020.00011
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/VizSec48167.2019.9161524
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1109/VIZSEC.2016.7739576
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1145/3041008.3041009
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1111/cgf.13677
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1007/978-3-540- 46505-8
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2379690.2379694
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1145/2669557.2669572
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://doi.org/10.1109/BigData.2018.8622092
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://www.vojtechruzicka.com/bf4dd32d5823c258c319cced38727dce/OSSAReport.pdf
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.4018/IJOSSP.2018100101
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114

	Introduction
	Related Work
	Problem Statement
	Table-based Vulnerability Exploration
	Dependency Tree
	Vulnerability Information
	Filter and View Options

	Evaluation
	Use case: Eclipse GitHub Repositories
	Preliminary User Feedback

	Discussion and Conclusion

