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Figure 1: We apply our circular projection technique –cPro– to a high-dimensional text dataset of a collaboration network. Our technique
enables the visualization of linked clusters on a circular layout and thus creates a basis for circular visualizations, such as chord diagrams.

Abstract
Typical projection methods such as PCA or MDS rely on mapping data onto an Euclidean space, limiting the design of resulting
visualizations to lines, planes, or cubes and thus may fail to capture the intrinsic non-linear relationships within data, resulting
in inefficient use of two-dimensional space. We introduce the novel projection technique –cPro–, which aligns high-dimensional
data onto a circular layout. We apply gradient descent, an adaptable optimization technique to efficiently reduce a customized
loss function. We use selected distance measures to reduce high data dimensionality and reveal patterns on a two-dimensional
ring layout. We evaluate our approach compared to 1D and 2D MDS and discuss further use cases and potential extensions.
cPro enables the design of novel visualization techniques that employ semantic distances on a circular layout.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

Visualizing high-dimensional data remains a challenge in the field
of data analysis. The complexity and intricacy inherent in such
datasets demand advanced methods for effective representation and
exploration. Projection methods have emerged as a crucial tool in
this context, offering a means to distill high-dimensional informa-
tion into more comprehensible forms. Typical projection methods,
including Principal Component Analysis (PCA) [Jol86] and Multi-
dimensional Scaling (MDS) [Kru64], have been instrumental in un-

veiling complex data structures, enabling analysts to perceive pat-
terns and relationships that would otherwise remain hidden in high-
dimensional spaces. The concept of cPro originated from identi-
fying a need within the visualization domain to effectively orga-
nize items in a ring-like formation based on inherent distances, for
which we observed a notable gap in the existing literature.

As evidenced by works in statistics like those by Mardia [Mar72]
and Fisher et al. [FLE87], certain types of data, such as directional
data, are more effectively described through spherical representa-
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tions. This understanding is supported by examples ranging from
protein structure [TC02] to observed wind directions. Additionally,
in numerous challenges such as text analysis or image classifica-
tion [DJP06], data frequently undergoes normalization during pre-
processing to emphasize its directional distribution. Despite this,
only a limited number of machine learning methods actively con-
sider the inherently spherical characteristics of certain types of data
during the modeling phase.

Conventional projection methods primarily rely on transforming
data from and into Euclidean spaces, usually n-dimensional to two-
dimensional planes. This approach, while useful, inherently limits
their applicability to a planar topology and bounds the potential
of visualization designs. The fundamental geometric limitations of
Euclidean spaces — their unbounded and non-compact nature —
are incompatible with the properties of a sphere, which is com-
pact, bounded, and closed. This difference raises critical questions:
How do classical DR approaches, which assume Euclidean space,
fair when projecting data embedded on a spherical manifold? Are
we limiting our visualization capabilities by confining ourselves to
planar representations? Addressing the mentioned challenges, our
contributions are as follows:

• We introduce cPro, the first technique specifically designed to
create ring-shaped projections, offering a novel perspective for
data visualization.

• Through a detailed comparative evaluation, we illuminate the
limitations of traditional planar projection methods when applied
to data that inherently aligns better with spherical geometries or
cosine distances.

• We explore potential applications of cPro and outline directions
for future research to expand the repertoire of visualization de-
signs for novel representation strategies.

2. Related Work

Dimensionality reduction techniques, extensively surveyed in
the fields of data analysis and machine learning, aim to sim-
plify complex datasets by lowering their dimensionality [vdM-
PvdH09, SVP14, CG15, NA19, EMK∗21]. Common methods, such
as PCA [Jol86] and MDS [Kru64], and t-distributed Stochastic
Neighbor Embedding (t-SNE) [vdMH08], prioritize the preserva-
tion of usually Euclidean pairwise distances or local neighborhoods
to create projections on planar space.

Extensions aim at addressing data with an intrinsic spherical
structure: Circular PCA [Sch07] modifies traditional PCA to
include the radial structure of data by constraining the output to
a closed curve structure. Persistent Cohomology [dSVJ09] offers
a framework to detect and derive circle-valued, low-dimensional
representations of manifolds. Hyperspherical Variational Auto-
Encoders (VAE) [DFC∗22] utilize a von Mises-Fisher distribution.
This choice addresses the shortcomings associated with conven-
tional VAEs using Gaussian priors, such as the Origin Gravity Ef-
fect in low dimensions and the Soap Bubble Effect in high dimen-
sions, making them better suited for spherical manifolds. Radial
projections are also relevant network data: For instance, Circular
Graph Embeddings [KT10] map graph data onto a circular spatial
embedding suitable for visualization on a sphere.

Radial visualizations, recognized for their compact, space-
efficient layouts and visual appeal, have been extensively reviewed

Figure 2: Given a torus dataset, cPro preserves angular relation-
ships and disc-like clusters compared to 2D and 1D MDS.

in the literature [DLR09, DBB10, BW14, WDG∗20]. For example,
Chord diagrams arrange data points in a circular layout, with arcs
linking them to illustrate relationships. Typically, the placement of
these data points follows either an inherent order or is allocated for
visual clarity [RLBD20, GMB23]. Similar patterns are observed in
Radar charts [ALBR16], where quantities are depicted on radial
axes emanating from a central point. Star Coordinates and their
variants [Kan00,HGM∗97,NS11,ZNN16] also employ axis vectors
evenly spaced around a center. In contrast to the mentioned tech-
niques, cPro is designed to create spatial arrangements on a circular
layout to reflect distances from a high-dimensional data space.

3. cPro: Circular Projection

We begin by defining the notations utilized throughout our work us-
ing common notations for projection techniques. Consider a dataset
D := {xi}, where each sample xi ∈ Rn represents an n-dimensional
data point with 1 ≤ i ≤ |D| for |D| samples. The cPro algorithm
aims to project such high-dimensional data points onto the one-
dimensional circumference of a circle, which we formally describe
as P◦ :Rn 7→ [0,1)⊂R. Thus, let P◦(xi) := pi the projection of xi on
a 1-sphere (i.e., the circumference of a circle) described by an an-
gular value relative to a fixed point on the circumference. Note that,
from this value, we can easily compute a two-dimensional coordi-
nate, i.e., (r cos(pi × 2πr), r sin(pi × 2πr)) for the projected point
pi and radius r. Furthermore, let P := {P◦(xi) |xi ∈ D} the set of all
projected points. We further employ Gradient Descent [Ama93] to
optimize a loss function L : (R|D|×|D|,R|D|) 7→ R. This algorithm
iteratively converges to a solution, with k, the number of iterations
limiting the maximum execution steps and η defining the learning
rate, i.e., the adaptation strength applied in each iteration.

To capture the angular relationships between data points in D, we
measure the cosine distance of vectors in high-dimensional space.
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Figure 3: cPro creates circular structures forming groupings on
arc sections in contrast to planar projection techniques. We test
against 2D and 1D MDS projections on different datasets such as
citations, torus, and penguins.

Thus, we define dcos : (a,b) 7→ [0,1]⊂R with a,b ∈Rn as follows:

dcos(a,b) :=
1
2

1−

n
∑

i=1
ai ·bi√

n
∑

i=1
(ai)2 ·

√
n
∑

i=1
(bi)2

 (1)

Note that, in this definition, we scale the standard cosine distance
to a range of (0,1), yielding a value of 0 for vectors of the same
angle, 1

2 for orthogonal vectors, and 1 for vectors pointing in the
opposite direction. This scaling allows us to omit a scaling inside
the loss function, which is repeatedly computed; additionally, it is
easier to understand.

On the low-dimensional side, we define the distance on the cir-
cumference of a circle d◦ : (a,b) 7→ [0,1]⊂R with a,b ∈ [0,1)⊂R
describing 1-dimensional positions on the circumference of the cir-
cle. Thus, we define this function as:

d◦(a,b) := 2 ·min(∥a−b∥,1−∥a−b∥) (2)

The maximum possible distance is reached if two points are placed
directly opposite to each other, i.e., halfway around the circle, ex-
pressed as d◦(a,b) = 1. Additionally, if a = 0 and b = 1, these
points should be placed at the same location since their relative an-
gle is 0, i.e., b is placed a ”full circle“ away from a. Thus, we
use the minimum function to achieve this circular behavior. We
can do this since the length of the arc L on a circle circumfer-
ence with radius r is geometrically defined as L = rα for angle
α in radians. Independent of factor r, we have α = 2π · d◦(a,b).
The cPro projection technique leverages gradient descent [BV04] a
custom loss function L (see Equation 3) to map high-dimensional
cosine distances in D to a lower-dimensional circular space. In-
spired by state-of-the-art MDS implementations [dLM09], we de-

Figure 4: cPro with three different origins (A–C) applied. Select-
ing an appropriate high-dimensional origin as approximately dis-
played on the PCA projection (top-left) is crucial. The points B and
C separate the clusters more clearly compared to point A.

fine a loss function that measures the difference between angular
distances through dcos (see Equation 1) in high-dimensional space
and low-dimensional space with d◦ (see Equation 2). The high-
dimensional angular distances are represented by the distance ma-
trix M := {mi, j} with mi, j = dcos(xi,x j) for samples x1, . . . ,x|D|.
We define all projected points as P := {p1, . . . , p|D|}, which are it-
eratively updated during Gradient Descent. Finally, we define the
loss function L as:

L(M,P) :=
1

|D|2
|D|

∑
i=1

|D|

∑
j=1

∣∣mi, j −d◦(pi, p j)
∣∣ (3)

The distance matrix M is fixed during Gradient Descent. We add
1

|D|2 as a normalization factor, allowing for a quality comparison
between datasets of different sizes. The reminder sums overall dif-
ferences in high- and low-dimensional distances. One benefit of
cPro lies in the projection of spherical or circular-shaped data,
which maintains angular relations. By optimizing for this criterion,
we make it particularly suitable for datasets with more relevant re-
lationships, such as textual/document similarity or computer vision.
The algorithm runtime and steerability directly depend on the spec-
ified parameter set of the gradient descent optimizer. The complete
code for projection is added to the supplementary material and will
be made publicly available.

Translation: Our approach is dependent on the position of the ori-
gin, i.e., the position at which the angle between two vectors is
measured, as defined by the cosine distance. Thus, our technique
enforces a “relative perspective” on the data as shown in Figure 4.
Our preliminary tests show that using the data mean as the grav-
itational center (Point C) provides the best results while the cir-
cumcenter is more likely to create highly dense clusters and mis-
allocations, forcing originally close points towards opposite, radial
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Dataset Metric cPro 1D MDS 2D MDS

Euc. Cos. Man. Euc. Cos. Man. Euc. Cos. Man.

Citations

Stress (↓) .99 .06 .99 .99 1.43 .99 .99 1.08 .99
Correlation (↑) .68 1.0 .69 .04 .01 .41 .69 .21 .68
Silhouette (↑) -.20 -.25 -.19 -.30 -.25 -.30 -.18 -.29 -.20
Trustworthiness (↑) .63 .64 .62 .75 .67 .76 .86 .95 .86
Avg Dist (↓) .54 .50 .74 1.38 1.00 1.38 1.59 .90 2.06

Penguins

Stress (↓) .99 .03 .99 .99 .93 .99 .99 .61 .99
Correlation (↑) .68 1.0 .68 .46 .15 .46 .72 .56 .68
Silhouette (↑) .15 .15 .15 .18 .11 .18 .42 .61 .41
Trustworthiness (↑) .76 .76 .76 .68 .61 .68 .80 .87 .81
Avg Dist (↓) 1.01 .98 1.13 1.94 .99 1.94 2.47 .99 3.16

Iris

Stress (↓) .59 .17 .68 .42 .68 .57 .18 .22 .32
Correlation (↑) .84 .97 .84 .73 .57 .73 .95 .94 .95
Silhouette (↑) .41 .40 .41 .32 .17 .32 .40 .49 .41
Trustworthiness (↑) .82 .84 .82 .90 .72 .91 .98 .95 .97
Avg Dist (↓) 1.10 .96 1.41 2.09 .99 2.09 2.45 .97 3.11

Table 1: Evaluation measures as presented by Espadoto et al. [EMK∗21] for the citation, penguins, and iris datasets. cPro generally
outperforms 1D and 2D MDS for cosine similarity but shows disadvantages for euclidean and manhattan distance metrics.

directions. Future work will focus on identifying optimal origin co-
ordinates based on the input data.

Rotation: Given an origin, our approach is rotational invariant
since the respective angle of two vectors relative to the origin does
not change when rotating the dataset around it. With a non-standard
rotation, where the data is rotated around an axis or point that is
not aligned or identical to the origin, the rotation will change the
outcome of our approach because the relative angle of vectors is
changed with respect to the origin.

Scale: With a fixed origin, scaling does not impact the result of our
approach since scaling only changes the magnitude of the vectors,
which does not influence the outcome of the cosine distance cal-
culations. However, a scaling that impacts the components of each
vector individually, like a min-max-normalization, will change the
relative angle between vectors.

4. Evaluation

We decided to utilize commonly applied and generated datasets for
evaluating cPro by varying the numbers of dimensionality d, tar-
get classes K, and number of data points n. This includes the iris,
penguins (Figures 3 and 4) and the breast_cancer datasets from
scikit-learn (scikit-learn.org, visited on 01.02.2024). To test edge
case situations, we used eleven synthetic datasets: spherical data
formations 2D-, 3D-, 4D-, 5D-sphere (Figure 3) and torus (Figure
2), clustering patterns (blobs, blobs_3d), and more complex struc-
tures snakes, three_circles, unbalanced. We further retrieved cita-
tional network data specific for testing cosine distances on high-
dimensional, linked document data (Figure 1 and 3).

Following Brandes et al. [BP07], we ensured the robustness of
our results by averaging metrics across 100 independent runs. As
gradient descent depends on its initialization values, we present
the averaged measurements of which we observed negligible vari-
ance. We chose Multidimensional Scaling (MDS) for our com-
parison due to its methodological similarity to cPro, both aiming

Dataset Dimens. (d) # Classes (K) # Points (n)
iris 4 3 150
penguins 6 3 345
breast_cancer 30 2 569
nD-Sphere 2,3,4,5 2 100
torus 3 1000 1000
blobs(3D) 2,3 4,4 200,400
cube 3 4 400
snakes 3 1000 1000
three_circles 2 200 200
unbalanced 2 4 100
citational 8 3 400

Table 2: Datasets used in our evaluation.

to preserve intrinsic data relationships within reduced dimensional
spaces and utilizing cosine and Euclidean distances for angular and
low-dimensional planar metrics respectively. Additionally, we in-
corporated Manhattan distance [GLS∗15] to provide an indepen-
dent assessment of performances across both methods.

We find that cPro’s performance highly depends on the set learn-
ing parameters and origin point as discussed in the previous section.
Based on our experiences, we evaluated our approach by using the
gravitational center of the dataset as the origin and executed our
experiments with 1000 iterations with a learning rate of 0.05.

5. Discussion

Table 1 shows typical evaluation results (see the supplementary ma-
terial for the complete evaluation). The superior performance of
cPro when utilizing the cosine metric can be attributed to its de-
sign, which aligns particularly well with data embedded in spheri-
cal spaces. Unlike planar projection methods, such as MDS, which
inherently assume an Euclidean space and thus excel in it, cPro is
optimized for circular layouts. The technique achieves higher cor-
relation, lower stress, and smaller average distances for datasets
based on the cosine metric. The strength of cPro in handling spheri-
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Figure 5: Sketches of future cPro-based designs. cPro allows to utilization of the center space, e.g. to embed a radial inner bar chart (right)
and simple legend (left), or designing novel techniques such as introducing temporal attributes through multiple rings (middle).

Figure 6: Run time of applied projection techniques by the number
of items applied on the snake dataset. We see improvements of cPro
being 6.5 and 3.3 times faster compared to 2D and 1D MDS.

cal data also reveals its limitations in terms of Trustworthiness com-
pared to 2D MDS. While cPro can force data points into incorrect
groupings due to its radial constraint—evidenced by reduced Trust-
worthiness scores. Essentially, cPro occupies a unique position be-
tween 1D and 2D projections, embodying a trade-off by enhancing
Correlation with its circular layout, yet this can affect Trustwor-
thiness as it may condense neighborhoods, distorting original re-
lationships as depicted in Figure 3. Having an additional degree
of freedom and thereby enhanced, spatial flexibility, 2D MDS of-
ten results in better preservation of neighborhood relations raising
the question about the fairness of comparison. Figure 6 illustrates
the comparative computational performance of cPro against MDS,
evaluated on an AMD Ryzen 7 PRO 5850U 1.90 GHz 8-core pro-
cessor. The results demonstrate that cPro is approximately 6.5 times
and 3.3 times faster than 2D MDS and 1D MDS, respectively.

Other Optimization Strategies: We are aware that the result of
Gradient Descent is prone to converge to a local optimum. Thus,
we also tested other optimization strategies that are probabilistic
and do not make a similar assumption about the loss function. We
started designing cPro using Basin-Hopping, which integrates a
stochastic global search with a local minimization strategy, making
it less likely to get trapped in local optima compared to traditional
methods. Secondly, we tested dual annealing [XSFG97] primarily
for its proficiency in navigating non-linear response surfaces and
its stochastic nature due to its efficacy in handling complex op-
timization tasks. However, we ultimately chose Gradient Descent
for our implementation due to its simplicity and the extensive liter-

ature supporting its effectiveness in various applications despite its
potential for local convergence.

Future Work: We believe that cPro has the potential to form the
basis for designing novel visualizations as sketched in Figure 5.
As visualization designs are often combined with projection tech-
niques to explore high-dimensional data, cPro opens up its cen-
ter space enabling the displayment of additional information and
data interaction [CMK20]. Future techniques can highlight seman-
tic distances and groupings on the outer ring in combination with
selected data attributes as visualized by a barchart (right) or a sim-
ple legend (left), or to build upon current projection designs (mid-
dle). Similarly, we want to investigate cPro’s potential to extend
current visualization designs such as chord diagrams or circular
graph layouts. As discussed, cPro is incapable of preserving dis-
tances among points at the same angle. We plan to focus on ex-
panding cPro’s performance and applicability, investigating origin
positioning and extending spherical projections, as well as investi-
gating alternative optimization strategies to further refine the pro-
jection process. We further plan to expand the scope of comparison
to include additional projection methods such as PCA.

6. Conclusion

In this paper, we introduced cPro, a novel circular projection tech-
nique optimized for high-dimensional data visualization. Utilizing
gradient descent, cPro efficiently projects data onto a circular lay-
out, striking a balance between 1D and 2D projections by offering
a unique approach to distance representation. While generally un-
derscoring 2D MDS, our evaluation highlights cPro’s efficacy, es-
pecially in preserving data relationships prone for cosine distance.
While applying well-established evaluation measures [GLS∗15] to
compare similar projections, we emphasize the need for evaluation
measures of spherical dimension reductions. Future directions in-
clude broadening cPro’s applications, optimizing origin selection,
and refining spherical projections. The potential for cPro to inspire
new designs opens an exciting avenue for innovation in the visual-
ization domain.
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