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Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating
counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods
are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we
propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using
multilateration — a method used for geopositioning. Our approach finds data values for locations where no
data point is projected under the key assumption that a given projection technique preserves pairwise distances
among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique
is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional
projections up to | D| -1 dimensional spaces if given at least | D| data points. We compare several strategies for
multilateration point selection, show the application of our technique on three additional projection techniques
apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse
projections. We also show its application to computing decision maps for exploring the behavior of trained
classification models. When the projection to invert captures data distances well, our inverse performs similarly
to existing approaches while being interpretable and considerably simpler to compute.

1. Introduction datasets [15]; assessment of distortions caused by direct projection
methods [16]; and creation of counterfactual explanations, ie., help
analyze why a classifier made a certain decision by generating close
alternative inputs that would flip the prediction outcome [17].

While tens of direct projection techniques exist, only a handful of in-
verse projections have been proposed. All of these, however, suffer from
various challenges such as non-smooth variations, a black-box, hard to

interpret, behavior, and sometimes high computing times [18,19]. We

Dimensionality reduction techniques, also known as multidimen-
sional projections (MPs), are methods of choice for the analysis and
visual exploration of high-dimensional data. Given such a dataset,
projections create a (much) lower-dimensional version thereof in which
relations such as inter-sample relationships are preserved as much
as possible [1-3]. To achieve the above, a subset of projections aims
to preserve distance relations between data samples, e.g., Principal

Component Analysis (PCA)[4], Multidimensional Scaling (MDS) [5],
or Sammon’s mapping [6]. Preserving distances, as compared to other
relationships, allows a simpler interpretation of dense point clusters and
neighborhoods in the resulting 2D scatterplots in terms of their shared
data similarities [7-9].

Inverse projections P~! aim to perform the inverse of a given projec-
tion mapping P, that is, map from the 2D space to the data space. They
enable multiple applications such as user-driven data interpolation
based on interaction in a 2D space for shape control [10] or elec-
tronic instrument synthesis [11]; visual exploration of trained Machine
Learning (ML) models [12-14]; user-driven pseudo-labeling of training

* Corresponding author.

addressed such limitations for MDS-class projections by leveraging their
distance-preserving property via an algebraic multilateration-based in-
version process [20]. We evaluate Multilnv — our multilateration-based
inverse projection approach — on six datasets and in combination with
four direct projections, namely MDS, CCA, Sammon’s mapping, and
PCA. We also explore six different strategies for the selection of points
to compute the inversion and evaluate projection quality by considering
four established quality metrics. Finally, we show how Multilnv, which
is simple to implement, simple to interpret, computationally efficient,
and avoids the black-box behavior of existing inverse projections, can
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be applied to compute gradient maps and decision maps for exploring
trained ML models. To summarize, our contributions are as follows:

» We introduce Multilnv - an interpretable technique for the multi
lateration-based inversion of distance-preserving projections.

» We give an extended qualitative and quantitative evaluation of our
technique using gradient maps, decision maps, direct projection
errors, and mean-squared inverse-projection errors to provide: (1)
a comprehensive validation on different datasets and parameter-
izations, and (2) a comparison with existing inverse projection
approaches.

» We publish our source code, datasets, and results on OSF.

2. Related work
2.1. Notations

We start by introducing the needed notations to describe direct and
inverse projections. Let D = {x;}, ;< p| be a dataset of high-dimensional
samples x; € R”, also called observations or data points. A projection
technique is a function P : D - R” m < n, where typically m € {2,3}
for visualization purposes. Without loss of generality, we confine our
work to m = 2. For convenience, we next denote P(D) = {P(x;) | x; €
D} to be the projection of the entire dataset D. An inverse projection
P! is a function that maps m-dimensional points back to the high-
dimensional space, defined implicitly by minimizing a cost of the form
P~ (P(D)) ~ D. A P~ becomes valuable when applying it to points
outside the set P(D), which allows creating synthetic high-dimensional
samples from any point g € R™.

2.2. Projections

The main goal of a projection P is to preserve the underlying
structure of D as well as possible in the low-dimensional space such
that conclusions about D can be drawn directly from P(D)[3]. Sev-
eral projection techniques exist that differ in how they capture such
structures and how they are technically implemented. Data structures,
i.e., the mapping goals of P, are usually defined by a loss function that
is being minimized during the computation of P. Two main structure
types can be found here: Distance-preserving projections aim to capture
distances between data samples. For example, the objective function of
Multidimensional Scaling (MDS) [5] directly optimizes for the preser-
vation of pairwise distances by minimizing the stress Y, ;(d;; — ;)%
where d;; denotes the Euclidean distance in R" and d ; the distance in
R™. Neighborhood-preserving projections aim to map samples so their
k-nearest neighbors are similar in both R” and R”. Examples of such
projections are t-SNE [21] and UMAP [22]. Projection techniques have
been extensively discussed and evaluated in several surveys [1-3,8,23].
In our work, we focus on distance-preserving projections as these are
simpler to interpret — distances in the projection scatterplot should
directly reflect data similarity.

Projection methods can also be classified into linear or non-linear;
and local or global. Linear methods map the data to R™ using a
single linear transformation. While computationally efficient, they can,
however, only capture linear structures in the data and fail for more
complex datasets. Principal Component Analysis (PCA) [4] is a well-
known linear technique that computes the m dimensions, called prin-
cipal components, as linear combinations of the n data dimensions, by
maximizing variance. This is equivalent to searching for a linear com-
bination of dimensions that best preserves Euclidean distances[24].
In doing so, PCA focuses on global data structures. Metric Multidi-
mensional Scaling (MDS) [5] is also a global method that is, however,
non-linear. Non-linear methods allow to capture non-linear relation-
ships in the data often existent in high-dimensional datasets with
complex structures. Opposed to global methods, local approaches fo-
cus on the preservation of local data features. Projections that work
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similarly to MDS, ie., aim to preserve distances, but focus on local
neighborhoods are Sammon’s mapping [6] and Curvilinear Component
Analysis (CCA) [25]. Sammon’s mapping gives small distances in the
data space a higher weight, i.e., tends to better preserve distances of
close samples in the projection. Its cost function is defined as ¥, ;(d;; -
d;;)*W (d;;), where W is a monotonically increasing weighting func-
tion that emphasizes small data distances. While Sammon’s mapping
penalizes missing neighbors, it is prone to false neighbors (see next
Section 2.3). In contrast, CCA aims to preserve distances of points that
are close in the projection by optimizing the cost function ¥, ;(d;; -
dy; VW (d; ), where W is a monotonically increasing weighting function
that emphasizes small projected distances.

2.3. Projection quality

Any projection function P will be unable to fully achieve its distance-
or neighborhood-preserving objectives on sufficiently complex and/or
high-dimensional datasets D. Practically, this leads to so-called distor-
tions, i.e., patterns in P(D) which may not correspond to patterns in D;
and/or patterns in D which are not captured by P(D) [3,9,26]. Common
distortions include false and missing neighbors. False neighbors refer
to points close in P(D) which are far apart in D. Missing neighbors
refer to points close in D which are mapped far apart in P(D). The loss
functions of CCA and Sammon’s mapping can be used respectively to
identify false and missing neighbors [24].

Measuring and visualizing distortions is crucial to determine how
well a P(D) truly captures (all of) D. Several quality metrics and
visualization approaches have been proposed to this end [9,24,26,27].
Quality metrics can be computed on different levels, i.e, on point-
pairs, neighborhoods, classes, or on an entire P(D) [3,23]. We next
focus on global metrics — the latter type — that are well-established and
commonly used.

Trustworthiness [28] measures if the k nearest neighbors in P(D) are
neighbors in D, i.e., is an indicator for false-neighbor distortions, and
is defined as

|D|

BT 2 2
- (r(xixp) = k) €10,1], (1)
IDIkQIDI =3k =1 & 4=, i

TW(k) = 1
where F,(x;) denotes the set of points that are among the k nearest
neighbors of point x; in P(D) but not among the respective neighbors
of the same point in D; and r(x;, x ) refers to the rank of point x ; within
the ordered nearest neighbors of x; in P(D). A TW value close to 1
indicates that one can trust the local patterns visible in P(D).

Continuity [28] measures if the k nearest neighbors in D are also
neighbors in P(D), i.e., indicates missing neighbors, and is computed
as

9 |D| .

CT0) =1~ B =3, =) Y Y Genxp-k e, (2

i=1 x;EM(x;)

where M, (x;) refers to the set of points that are among the k nearest
neighbors of x; in D but not among the k nearest neighbors in P(D);
and 7(x;, x;) is the rank of point x; within the ordered nearest neighbors
of x; in D. Similar to trustworthiness, a CT value of 1 is best.

For labeled data that is ideally well separable in D, Neighborhood
Hit [29] measures the proportion of the k nearest neighbors of a point
in P(D) that share the same class label as the point itself as

& I{x; € N(xp) |1 =1}

i=1

€[0,1], 3

where N, (x;) denotes the set of k nearest neighbors of the point x; in
P(D). A value NH = 1 tells that the projected data can be well separated
into different classes.

Finally, Normalized Stress [30] measures how well a projection pre-
serves pairwise distances as

_ Zi,j(du - d;j)z

NS 3
Zi,j dij

€1[0,1], @
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where d;; is the Euclidean distance of samples x; and x; in D and d, ;
is the Euclidean distance of the projected points P(x;) and P(x;). A

distance-preserving projection should ideally produce NS = 0.
2.4. Inverse projections

An inverse projection is a function P~! : R” — R” that aims to
reverse the mapping of a given projection P for a dataset D. P~ is typi-
cally constructed by minimizing a cost of the type X, ., Il PLHP(x)—x],
where ||-|| denotes the L, norm. Also, inverse projections should ideally
be smooth so that one can use them to extrapolate synthetic data values
away from the projected points P(D).

While many projection techniques exist, only a few inverse projec-
tions have been proposed. One early such technique inverts a sample
x € R? by Shepard interpolation of all samples x; € D with weights
[Ix — P(xp)|l [11]. This inverse projection is smooth by design and can
handle, in theory, any direct projection P. Yet, this method has a
global nature, so it cannot handle local structures of high-dimensional
datasets. Local Shepard interpolation was further refined by iLAMP [31]
to invert the piecewise-linear affine projection LAMP [30]. As iLAMP
uses only a small set of neighbor points, it is not smooth. Later, Amorim
et al. [10] refined it using Radial Basis Functions (RBFs) to a local
and piecewise continuous result. The UMAP technique [22] is, to our
knowledge, the first technique (besides PCA-class methods) to jointly
compute P and P~'. However, UMAP’s P~! can be difficult to interpret
as UMAP’s P has a highly non-linear nature that tends to cluster
similar samples, leaving large empty regions in the 2D space where
P~! must extrapolate far away from known points [16]. Deep learning,
originally in the form of autoencoders[32], has also been used for
direct and inverse projections. More recently, for a given dataset D and
projection technique P, supervised deep learning, using the training
set (D, P(D)), was used to learn both P [33-35] and P~! [34,36]. Such
methods are linear in the size of D, thus much faster than earlier inverse
and/or direct projections, work well for any data dimensionality », and
are smooth by construction. Yet, it is hard for users to predict how
deep-learned (inverse) projections actually work.

2.5. Inverse projection quality

The quality of inverse projections can be measured either directly by
considering the inverse projection on points for which we have ground
truth, i.e., on projected data samples; or indirectly by assessing other
desirable properties such as smoothness, as follows.

An inverse projection should ideally yield P~!(P(x)) = x for all
x € D. For a single x; € D, this can be evaluated by the mean-squared
error (MSE) defined as

1% _
MSE(x,) = - Z(x[j - PN (P(x;))*
n“
=1 (%)
1 _
= ~llx; = PP
For an entire dataset D, the average MSE can be computed as
1 |D|
MSE(D) = — Y MSE(x,)
D] ; ' ]
D] (6)

= 57 2yl = PP
i=1

Note that Eq. (6) can also be applied to subsets of D[16,36]. This is
useful when splitting data into train and test sets.

For points ¢ € (R?> — P(D)), i.e., points ‘unseen’ by P, we have
no ‘ground truth’ in terms of samples in D that project there. These
points are exactly the ones where we want to practically use an inverse
projection later on to create synthetic data samples. The gradient map
technique [16] can be used to evaluate the quality of an inverse projec-
tion for such unknown points by computing the total pseudo-derivative
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of P~1. To this end, we need to quantize q € Z> to a pixel location on
a discrete 2D grid, such that we can estimate the gradient magnitude
of P~ at ¢ via a symmetric finite difference filter in horizontal and
vertical directions as

G(g) = \/IIP‘I(q,) = P=H(gII> +I1P~1(g,) = P~ (g%

where g¢,,q;,q,, and g, are the right, left, up, and down 4-neighboring
pixels of q. When G(g) has nearly constant (and, ideally, low) values
over a 2D area, one-pixel ‘moves’ of ¢ in that area cause only small
changes to the inferred samples P~!(q) € R”, i.e., P~! is smooth at these
locations, which is highly desirable. For instance, users interactively
selecting points ¢ in such areas will get new data points in a confined,
controlled area in R". Conversely, when G(g) has high values, small
changes in 2D, e.g., caused by a user interactively moving the point
g, can suddenly ‘throw away’ the generated samples P~!(q) into far-
apart regions in R”, in a way that is perceived as confusing and
uncontrollable by the user. Applications such as projection-assisted
interpolation or data synthesis then become hard to support [10-12].

2.6. Decision maps

Projections are designed to preserve similarities in the data space
D in the scatterplots P(D) they create. Hence, such scatterplots can be
used to judge the classification difficulty of a dataset: If a scatterplot,
which has high projection quality metrics, fails to clearly separate
points from different classes, this may indicate that a classifier will face
challenges in achieving high accuracy for that dataset [37]. Decision
maps extend the above idea of visually capturing the quality of a
classification model to points outside a training or test set D in a
dense fashion. They are created using inverse projections as follows:
Each pixel of a 2D image is mapped back to the data space via P!,
next classified by the model, and then colored to depict its corre-
sponding class. Regions in the map with the same color then show the
decision zones, and neighboring pixels of different colors depict the
decision boundary of the classifier. Some algorithms, like DBM [12],
are projection-agnostic, i.e., they can be applied by combining any
suitable direct and inverse projections P and P~!. Other methods, like
SDBM [14], jointly learn a projection and its inverse. Yet other methods
leverage the inherent invertibility of some projection algorithms, as
shown by Schulz et al. [13], who use a supervised version of UMAP
to create decision maps.

The hard-to-predict nature of inverse projections — related to their
limited smoothness discussed above in Section 2.5 — can lead to de-
cision maps showing fragmentation and jagged decision boundaries.
Filtering poorly projected points has been used to alleviate this [12].
Yet, artifacts still remain, so users need ways to know if these are
caused by the inverse projection or the actual ML model under ex-
amination. As such, fundamental issues concerning the interpretability
of inverse projections remain. Recently, Wang et al. [18,19] explored
the limitations of decision maps — and thus implicitly their under-
lying inverse projections — showing the limited interpretability and
predictability of current inverse projection methods.

3. Method

We next present Multilnv, our multilateration-based inverse projec-
tion method as proposed by Blumberg et al. [20]. The main idea of
this approach builds upon the goal of metric MDS, which aims to map
distances [|lx;—x; ||, x;, x; € D to distances || P(x;)— P(x;)|| up to a scaling
factor [38]. This property, expressed as ||x;—x; || ~ || P(x;)=P(x;)||, is key
to our approach. Further, we leverage geometrical relationships among
the data samples by using multilateration. This principle, also known
as trilateration in R?, aims to find a point’s position via its distances to
other known points. Typically used for geopositioning, multilateration
can be applied in any Euclidean space [39].
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Fig. 1. Through trilateration, the position of point p € R?> can be found given three
reference points x,, x,, x; € R> and their distances (i.e., the scalar values d,, d,, d;)
to point p.

2D Example: We want to compute point p = (p,p,)" given three
known points x; = (xl,l,xlgz)T, Xy = (xz,l,xz’z)T, and x; = (x3’1,x3,2)T
in R? and their distances d,, d,, and d; to p (see Fig. 1). We get that

G =P’ + (o = p)’ = d}

(a1 = P+ (egn = pp)* = d3

(x31 — )+ (X3, — ») = d;-

We subtract one equation (here the first) from the other two:
(a1 =P + (ap=p2)* = (X1 =P = (X1 2=p2)* = dy —d]

(X3 —P1)2 + (X3,2—132)2 = (x —171)2 - (X1,2—172)2 = dg—d%-
Rewriting and simplifying these equations to

= 2(x, = x1,0p1 — 20022 = X1 2)P2
=d; —d} = (3, = X7 )= (5, = x7)

= 2(x3, —x1,0p1 — 2(x35 = X1 2)P>
= d32 - dlz - (x§,1 - x?,l) - (Xg,z - Xiz)

eliminates the squares of our target variables p, and p,. Solving the
resulting linear equation system then gives us p.

Generalization to n Dimensions: For any n-dimensional space with
n < |D|, take n + 1 known samples x;,...,x,,; in R", where x; =
*i1s-nx,)f € R" i = 1,...,n + 1. Consider also a point p =
(s>, ---»p,)" € R" and its distances d; to each sample x,. For each sample
x;, we have ||x; — pll = d; & |lx; - pl? = (di)2 < Z;;l(xij - I’j)z = (di)z-
Assuming ideal distance preservation by the direct projection P, the
distances d; are equal to || P(x;) — P(p)||. Next, if we have a given point
g € R? — the one we want to inversely project to p — then we have
that P(p) = q (since we want that P~!(q) = p). Thus, we can compute
[[P(x;)— P(p)|| directly as || P(x;)—gl|. The above gives us n+1 equations
with n unknowns py, ..., p,. As the unknowns are squared, we subtract
the first equation (w.l.0.g.) from all others. This yields a linear equation
system of the form Ap = b with

=2(xy; = xy,1) =2(x, = X1 ) 1
A= : :
=2(Xp41,0 — X*1,1) =2(Xpp10 = X1 ) ]
and
(dr)? = Y02 )* = ((d))? = Y (xp )%
j=1 J=1
b= :
g1 = DG )P = (@) = Dy )P
j=1 j=1 ]

To determine the position of a sample p € R”, we need to know
the positions of n + 1 other samples and their distances to p. Hence,
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Fig. 2. Reference point selection strategies for multilateration (a)-(c) using a fixed set
of reference points and (d)-(f) using multiple randomized iterations. The target point
to be inversely projected is marked in red. Reference points are indicated by a black
border. (c), (f) Green hues encode local stress values; darker green shows low values,
and yellow higher values, respectively.

we have the constraint that the dataset size |D| must exceed the data
dimensionality n, an assumption which holds for most datasets.

3.1. Choosing reference points for multilateration

Choosing the samples x; that are used as reference points in the
multilateration computation is a crucial aspect of our approach. Using
all samples in D would yield a method similar to [11], which, as
mentioned in Section 2.4, cannot capture local structures well — at a
higher level, one can say that such an approach overfits the data. Also,
our approach requires using precisely » + 1 points for the equation
system not to be over- or underdetermined. Ideally, we expect Ap = b
to provide exactly one solution for the position of p. However, if some
of the samples x; are collinear or coincident, the matrix A is singular
(its determinant is zero), i.e., the equation system becomes degenerate
and does not yield a unique solution. Separately, a projection usually
does not preserve distances equally well across all samples in D, so
certain subsets of n+ 1 samples in D taken as reference points may lead
to more accurate inverse projections. We address this by evaluating
several selection strategies for choosing the reference points that can be
categorized into (1) strategies using a fixed subset of n+ 1 samples from
D as reference points for a specific target point, or (2) strategies using
multiple randomized iterations considering multiple potential subsets
as reference points for the target point.

Fixed Set of Reference Points: Our first approaches use a fixed subset
of D as reference points for a specific target point ¢ € R2. This means
that, to inversely project a single ¢, we deterministically select exactly
n+ 1 samples. First, we considered using the samples corresponding to
the n+1 furthest projected points, i.e., those having the largest distances
d; to g (Fig. 2(a)). This approach could, in theory, work well for
projections that aim to optimize global neighborhoods. Alternatively,
we used the samples corresponding to the n + 1 closest points to ¢ in
2D (Fig. 2(b)). The inverse projection should then behave more like the
local iLAMP approach [10] or, more generally, work for projections that
focus on local neighborhoods.

While taking the furthest or closest points is simple to implement,
we might consider poorly projected samples as reference points. If we
think, for instance, of outliers being projected far from other points,
the selection gets biased towards these points or vice versa for points
being projected into the center of the 2D plot. When the distances of
the corresponding data samples to the other samples in D are not well
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preserved by the projection, our inverse projection will not be accurate.
To counteract choosing poorly projected points as references, we next
propose to select a set of n+ 1 samples with minimal distortions (Fig.
2(c)). For this, we calculate the average squared deviation of pairwise
distances of a data sample to all other samples in D compared to the
distances of their projections, i.e., a local stress value as

stress; = |D|+1 Z(dij —d;), @
J#

where d;; is the Euclidean distance between samples x; and x; in D;
and d, ; is the Euclidean distance between P(x;) and P(x;). We then
select the n + 1 best-projected data points, ie., those having minimal
local stress values. The downside of this approach is that, apart from
inversely projecting points that are among the best-projected ones and
cannot be reference points for themselves, we now use exactly the same
set of points as references independent of target point g. Moreover,
the selected points may lie in close proximity or in an unfortunate
arrangement, possibly restricting the information to a concealed area of
the data, with reference points possibly being collinear or coincident.

Multiple Randomized Iterations: To address the limitations stemming
from a fixed set of reference points, we propose several strategies based
on the idea of majority voting. Specifically, for a given target point,
we consider several subsets of D as references, as follows. First, for a
given 2D point ¢ to invert, we select n + 1 samples from D randomly
and compute the resulting p = P~!(¢) using these samples as reference
points (Fig. 2(d)). We repeat this s times and finally set p to the medoid
of all the generated values. Simply put, taking the medoid acts as a low-
pass filter that limits the potentially undesirable effects due to a poor
(random) selection of samples from D. Further, we tested a stratified
random approach incorporating clustering (Fig. 2(e)). We first cluster D
using k-means with k = n+ 1 (our target number of samples to select)
and then randomly select one point from each cluster. We repeat the
selection s times and take the medoid of the generated positions. Clus-
tering is expected to reduce cases where selected points are collinear or
coincident. However, due to the restriction to select exactly one point
from each cluster, we might always select some poorly projected points
if they are assigned to the same cluster, e.g., outliers. Hence, we propose
a third randomized approach that applies filtering to the data (Fig. 2(f)).
Specifically, we filter out poorly projected data samples from the list of
reference point candidates by computing the local stress values as in Eq.
(7) and removing the 20% with the highest distortions. We then apply
the simple randomized strategy with the remaining 80% as reference
point candidates s times and take the medoid of the generated values.
Note that, when using filtering, s is expected to be smaller compared
to the other randomized strategies, as we already filtered out poorly
projected samples. We evaluate and compare the performance of these
different reference point selection strategies in Section 4.1.

4. Evaluation and results

We evaluate the quality of Multilnv using established quality mea-
sures for inverse projections (see Section 2). For known samples, we
compute the per-sample mean-squared error (MSE) and provide the
average MSE over all samples (Eq. (6)) as a global quality metric for
each projected dataset. To evaluate the inverse projection quality for
unknown points, we show gradient maps[16] as a visual means of
evaluation. As explained earlier, gradients should be overall constant
and low-valued, so that neighboring points in 2D are mapped closely
in the high-dimensional space by P~!.

We further used Multilnv to compute decision maps. As explained
in Section 2.6, such maps show the behavior of a trained classification
model as decision zones (i.e., data space areas where the same label
is inferred) separated by decision boundaries (i.e., places where the
model changes the inferred label) [12-14]. As classification models
for the decision maps, we used a k nearest neighbor classifier with
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Table 1
Datasets used in our evaluation with dimensionality n, intrinsic dimensionality ratio
p,» and number of samples |D|.

Dataset n P |D|

Plane 3 0.67 200
Rings 3 1 180
Blobs 10 0.6 1100
Iris [40] 4 0.5 150
Seismic [41] 24 0.29 646
Bank [42] 63 0.46 2059

k = 5, a random forest classifier, and logistic regression. Such clas-
sifiers should produce relatively compact decision zones with smooth
boundaries [19]. As such, we can evaluate the quality of our inverse
projection by checking for these attributes in the created decision maps.
For the generation of gradient and decision maps, we use a grid size of
250 x 250 pixels.

Datasets: We applied our method on synthetic data with a known
topology as well as on real-world datasets: (1) Plane is a simple syn-
thetic dataset of two same-sized clusters of points in 3D that lie approxi-
mately on a 2D plane, i.e., the data structure can be approximated well
by only 2 dimensions. (2) Rings is a synthetic dataset containing 3D
points arranged in two interlacing rings having 100 and 80 samples,
respectively. Given the interlacing of rings, this represents a scenario
where any projection to 2D induces a loss of information. (3) Blobs is a
synthetic dataset of 1000 points generated from a Gaussian distribution
with 5 clusters and 100 additional randomly distributed noise samples
with a dimensionality of n = 10. (4) Iris [40] serves as a simple real-
world application and represents three different flower species with
four dimensions and 150 samples. (5) Seismic [41] shows a real-world
scenario with more dimensions (n = 24) and includes data samples of
seismic bumps in a coal mine. (6) Bank [42] involves data of a direct
marketing campaign from a Portuguese bank used to predict whether
a customer will subscribe to a banking product or not and represents
the most high-dimensional included dataset with » = 63. An overview
of the datasets is given in Table 1. The intrinsic dimensionality ratio
p, [23] measures the percentage of principal components (computed
by PCA) that are needed to explain 95% of the variance in the data.
Thus, it indicates whether the projection may encounter difficulties
when mapping the data to 2D.

Projections: As direct projection methods, we considered metric MDS,
CCA, Sammon’s mapping, and PCA, as they all have a distance-preserving
objective (see Section 2.2). While MDS and PCA are global methods,
CCA and Sammon’s mapping focus on local neighborhoods, enabling
us to evaluate our P~! for diverse types of projections. The quality
of an inverse projection depends, by construction, on the quality of
the direct projection P one aims to invert. As such, we want to make
sure that our direct projections we start with are of high quality in
the first place. We measure this by the trustworthiness, continuity,
neighborhood hit, and normalized stress metrics (see Section 2). For
the first three, we set a value of k = 7, following [8,23,43]. Table 2
shows these measurements for all included datasets and projections. As
visible, we get quite high quality, meaning our inputs are a viable basis
for inversion through multilateration or, more generally, any other
inverse projection method.

4.1. Comparison of reference point selection strategies for multilateration

We evaluated six different strategies for selecting the reference
points (see Section 3). Table 3 provides the average MSE as quality met-
ric for inverting known points (i.e., projected data samples) for these
different strategies on all included datasets and projection methods.
Among the three strategies with a fixed set of reference points, the
selection of points with minimum local stress values clearly outperforms
the others, having consistently lower MSE values. The furthest and the
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Projection quality measurements with established metrics (see Section 2) for different datasets and projection techniques.
Arrows in brackets indicate good values for the respective metric. All values are rounded to the second decimal place.

Dataset TW (1) CT (1) NH (1) NS ()

X« < 2 < s B 5 s 8 5 5

s § § 5 ¢ § § 8 ¢ 8 5§ % g 8 & %
Plane 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
Rings .99 .98 .98 .98 1 1 1 1 .96 .92 .92 .95 .01 .07 .06 .02
Blobs .93 .92 .92 .92 .94 .95 .97 .96 .99 .98 .97 .97 .02 .1 .09 .06
Iris .98 .97 .97 .97 .99 .99 .99 .99 .95 .94 .94 .94 0 0 0 0
Seismic .96 .96 .96 .97 .98 .98 .98 .99 9 9 9 9 .04 23 .23 1
Bank .88 .8 .8 .85 .9 .9 .9 9 85 85 85 .85 13 47 47 .38

Table 3

Average Mean-Squared-Error on whole dataset D of Multilnv with different reference point selection strategies using six datasets and four
projection methods. The values are rounded to the fourth decimal place. The best-performing strategy is highlighted for each dataset and direct

projection.
g g
= =

2 7 & g 5 g g 7 & £ 5 g

k= ] g b= ] g k= ] = < 2 g

=] 8 g =] 3 < =t 3 g |5 [ =
Dataset & 3 g g G} = 2 < g g S =

MDS CCA
Plane 2.2033 0.0842 0.0003 0.0005 0.0017 0.0003 0.0011 0.0087 0.0003 0.0002 0.0003 0.0002
Rings 6.1 x 10* 1.4 x 10* 0.014 0.0154 0.0145 0.0145 4.04 x 10 9.67 x 10> 0.0398 0.0268 0.0228 0.024
Blobs 26.8795 39.9975 0.0541 0.0244 0.1012 0.028 3.6068 4994.72 0.0263 0.0252 0.0412 0.0213
Iris 828 7.3 x 10* 0.0179 0.0049 0.0064 0.0041 176.62 2.55 x 10 0.0032 0.0033 0.0033 0.0033
Seismic 1.3 x 10" 1.9 x 10 0.1889 7.2821 2.8 x 10'* 8.3341 9.2 x 10> 1.2 x 10 0.1814 4.6731 3.6 x 10> 4.6177
Bank 23873 340.51 58.2284 10.2324 50.0446 7.3672 1.2 x 10° 77.6901 0.4611 0.8906 5.8215 0.8809

Sammon PCA
Plane 0.0011 0.0087 0.0003 0.0002 0.0002 0.0002 0.0 0.0013 0.0 0.0 0.0 0.0
Rings 6.0 x 10 4.7 x 10® 0.6165 0.0275 0.0232 0.025 9.8 x 10! 1.2 x 102 0.3434 0.0131 0.0137 0.0126
Blobs 421.61 3314.46 6.3059 0.0274 0.1299 0.0234 0.2985 29.2552 0.0143 0.0206 0.0425 0.0163
Iris 120.28 3.1 x 10 0.0032 0.0034 0.0035 0.0032 259.96 6.9 x 10**  0.003  0.0029 0.003 0.0029
Seismic 9.2 x 102 1.2 x 10*° 0.1814 4.3715 2.7 x 10'2 4.7279 2 x 10" 2.3 x 102 0.1852 7.3388 9.8 x 10'2 4.5916
Bank 1.2 x 10°  77.7166 0.4692 0.8896 5.8236 0.8721 87.9265 9.8 x 10° 1.0846 1.0864 3.8416 0.8708

closest point selection strategies produce a few very high values for
MSE(x;), resulting in a high average MSE for multiple datasets and
projection techniques. This is most likely due to reference points being
poorly chosen, i.e., being collinear, coincident, or having distances not
well preserved by the projection.

Fig. 4 visualizes the local stress values for all tested datasets and pro-
jection methods, showing that pairwise distances are indeed not equally
well preserved by the projections. For MDS, high-stress values tend to
appear especially for samples along the outer edge of projected data
closer to the projection borders and are most prominent among outliers.
The only exception is the Rings dataset, where high-stress values appear
on the projected intersections of the rings. Since these intersections
are not representative of the original 3D data, distances of these data
points towards the others are most distorted. Similar observations of
local stress values can be made for the other projections as well, with
the difference that high-stress values are not only prominent at the
borders of the projection but tend to appear in the center as well. In
general, however, points inside the same cluster tend to be equally well
projected with a smooth change of local stress values over close points.
As the minimum stress strategy takes the points whose distances are best
preserved as references, it does not as easily encounter high MSE(x;)
values as the furthest and closest point selection strategies. However, as
reference points are chosen independently of the target point, yielding
an almost completely fixed set of reference points for a given dataset,
this method works like a linear transformation of the space with respect
to these points. This becomes evident when looking at the resulting
gradient and decision maps as exemplified by the Blobs dataset for the
PCA projection in Fig. 3. The technique produces perfectly smooth and
similarly low gradients for the whole plot. Most points in the decision

1.75

1.50

1.00
0.75
0.50

0.00

Fig. 3. Gradient map (left) and decision map (middle) for the Blobs dataset when using
PCA as projection and Multilnv as inverse projection. Reference points (marked red on
the right) for multilateration were selected based on the minimum local stress value
(right). The decision map was generated by training a k nearest neighbor classifier with
k=5 and coloring each pixel according to its assigned class when inversely projecting
it to the data space.

map are misclassified as belonging to the blue-colored cluster in the
upper right corner, although they are closer to projected points of other
classes. This is due to the restricted fixed set of reference points, where
one is taken from the blue cluster and all remaining from the red
cluster.

To tackle the issues stemming from a fixed set of reference points,
we used randomized approaches. Our previous evaluation [20] showed
that, for a sufficiently high number of selection steps s, the errors of in-
versely projecting points from D more or less stabilize beyond a certain
number of trials. Hence, we selected s for each dataset individually, so
that the error does not fluctuate much, ie., is representative for the
strategy. In a stratified random approach, we incorporated clustering
with the restriction to select exactly one point from each cluster as
reference point. While clustering is expected to reduce cases where
selected points are collinear or coincident, it seems that for some
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Fig. 4. Local stress values for different datasets and projections. Low stress values are colored in dark green and high stress values in yellow. Points are ordered according to the

stress values such that points with high values are plotted on top of the others.

datasets, we always select some poorly projected points, resulting in
high errors. This is shown by the simple randomized approach (without
clustering) outperforming the clustering one in terms of average MSE
(see Table 3).

Filtering out the worst 20% of data samples and applying the ran-
domized strategy with the remaining 80% as reference point candidates
is an alternative reference point selection strategy. When comparing
the simple randomized with the filtering strategy, we can, however, see
that no strategy strongly outperforms the other since the MSE values are
more or less on the same level. When looking at the gradient ranges in
Fig. 6, we can notice that they tend to be smaller for the filtered random
approach than the simple random one. As the simple randomized and

the randomized with filtering strategies performed overall best among
the reference point selections, we use them both for the remaining
evaluation.

4.2. Comparison to existing inverse projection techniques

We next compare our Multilnv approach to the inverse projection
methods iLAMP [31], iNN [16,36], and RBF [10], as these techniques
are also usable in conjunction with a user-chosen projection technique.
For each method, we use the same parameters as proposed in the
respective paper. We left SSNP [34] and autoencoders [32] out from the
comparison since these compute projection P and inverse projection
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Average Mean-Squared-Error (MSE) on test data (20% of whole data) for the inverse projection techniques under evaluation
using six datasets and four projection methods. Results are rounded to the fourth decimal place. The best-performing
combination of direct and inverse projection is highlighted for each dataset.

£ = £ =

= N < N

s S s I}

2 =3 I =3

) ) % ) ) %

4 14 Z I < 14 Z, I
Dataset g 3 Z 2 S 8 3 2 2

MDS CCA
Plane .0003 .0002 .0006 .0002 .0002 .0002 .0002 .0007 .0001 .0001
Rings .0141 .0161 .0012 .0012 .0008 .0274 .0241 .0014 .0009 .001
Blobs .0244 .0286 .0057 .0053 .0059 .0255 .0221 .0056 .0059 .006
Iris .0039 .004 .0034 .0038 .0036 .0029 .0024 .004 .0031 .0029
Seismic 8.1972 7.6382 .009 .1601 .0086 3.9003 4.0219 .0071 .0074 .0069
Bank 10.1569 7.4881 .0616 .0641 .0651 914 .8877 .078 .0735 .0809

Sammon PCA
Plane .0002 .0002 .0007 .0001 .0001 .0 .0 .0007 .0001 .0001
Rings .0364 .0213 .0014 .0009 .0011 .0139 .0133 .0014 .0012 .0012
Blobs .028 .0226 .0061 .0059 .0063 .021 .0164 .0062 .0059 .0064
Iris .0025 .003 .0043 .0034 .0031 .0024 .0022 .0044 .0028 .0033
Seismic 3.8713 4.7056 .0071 .0081 .0069 6.8332 4.2455 .005 1257 .0049
Bank .8905 .8854 .078 .0749 .081 1.101 .8767 .0705 .0657 .0736

P! jointly (see Section 2). As such, we cannot use these to invert a
given projection, i.e., in our case MDS, CCA, Sammon’s mapping, and
PCA.

Evaluation on known points: To assess the average MSE of un-
seen test samples, we split the data into training and testing subsets.
Technically, our approach is a lazy learner [44], i.e., has no training
phase and does not need a separate test set for evaluating its quality.
Yet, to be able to fairly compare our P~! with inverse projections
that require training, we restrict multilateration to only use training
samples as reference point candidates. Table 4 shows the average
MSE of the test samples for each inverse projection technique when
utilizing different projections, 80% of the data for training and the
remaining 20% for testing. For the synthetic Plane and the real-world
Iris data, our method manages to achieve a low average MSE for all
projections under evaluation, which is competitive towards the results
of iLamp, iNN, and RBF. What these datasets have in common is that
both have an intrinsic dimensionality n - p, of 2 (see Table 1), meaning
that two dimensions are already sufficient to represent 95% of the
data variance. This indicates that under good projection conditions,
i.e., almost no loss of information induced by P, multilateration is a
valid and well-performing inverse projection technique. However, the
average MSEs also show that our method encounters limitations when
the projection induces significant information loss. For the higher-
dimensional datasets Seismic and Bank, the average MSE on the test
data is much higher for Multilnv than for the other evaluated inverse
projection techniques. However, the difference varies strongly across
the four projection techniques with MDS tending to produce higher
errors specifically for our P~!. This shows that different projections
produce low-dimensional representations of the same dataset that vary
strongly in quality, which in turn strongly influences the quality of the
inverse projection techniques.

While Table 4 shows global indicators of the quality of inverse
projections, it does not explain the location or sources of errors. Fig.
5 covers this in greater detail for the Blobs dataset projected by MDS.
For visual assessment of the MSEs, we show a 2D scatterplot of P(D)
and color-code its Voronoi diagram, where P(x;) are the centroids of
the cells, with values MSE(x;). We use a luminance colormap with
dark mapping a high MSE and bright a low MSE, respectively. Tech-
nically, this approximates MSE(x;) over the entire image space using
piecewise-constant interpolation and highlights regions of high and
low distortions of the MDS projection and its inversion [24,26]. We
see a notable difference in the MSE visualization of our method as
compared to the other inverse projections in the distribution of errors.
Our method spreads darker colors, ie., higher MSE values, across

multiple Voronoi cells, rather than having them concentrated in cells
around the projected test samples. This shows the relative independence
of our approach from the choice of training and test data, unlike ML-
based methods. For our method, we also see that areas in the middle of
the projection scatterplot (being surrounded by many data points) have
a lower MSE than points at the projection borders. When comparing
these patterns to the local stress values (Fig. 4), we can retrieve similar
distributions. This shows (1) the strong dependency of our method on
projection quality and (2) the applicability of multilateration as an
indicator for projection distortions.

Evaluation on unknown points: Gradient map visualizations (see Fig.
6 for MDS), which show the inverse projection’s behavior away from
the known points in P(D), match the above findings. Despite having
comparably high gradient ranges, these maps are quite smooth for
our method, showing uniformly low values in the projection center
surrounded by data samples in P(D). iLAMP yields high gradients
visible as reticulated lines in gaps between projected point-clusters and
in areas with no projected points. In contrast, our method shows low
gradient values even in areas between clusters, where no data points
exist, see e.g the Iris and Plane datasets. Both our method and iLAMP
show uniformly low gradient values near and around projected points.
Conversely, RBF’s gradient maps show relatively high values between
projected points and low values in regions with no projected points.
The gradient map for iNN shows a mix of the above. Notably, for
Rings, RBF and iNN produce high gradients at the intersection of the
rings in the projection, i.e., regions where the projection is misleading
as the rings do not intersect or touch in the original 3D data space.
Overall, RBF and iNN perform best among the inverse projections in
terms of low gradient ranges. When the dataset dimensionality and
complexity increase (see e.g. Seismic and Bank), our method reaches
its limits, yielding high gradients, especially in the map corners. Yet,
the gradients are relatively smooth in comparison to all other inverse
projections. As mentioned in Section 2.5, low and constant gradients
are essential for the practical usage of an inverse projection method.
These general findings for MDS are mostly true for all projections
under investigation. The respective gradient maps can be found in the
Appendix.

Fig. 7 shows the decision maps computed by our method for a k = 5-
nearest neighbor classifier and our six datasets projected by MDS. While
these maps slightly differ from those produced by a random forest
or logistic regression classifier (see Appendix) for the same projection
technique, some patterns appear independently of the used classifier,
indicating that they are caused by the inverse projection and not the
classifier. The iLamp patterns for the decision map match the gradient



D. Blumberg et al.

Ours - random

4

Ours - filtered
T

\

qubs

Computers & Graphics 129 (2025) 104234

RBF

Fig. 5. Comparison of inverse projections showing the MSE for known points encoded in Voronoi cells associated with each projected sample of the Blobs datasets when applying
MDS. The number at the bottom right corner indicates the average MSE for the test samples (20% of the dataset; colored in green).
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Fig. 6. Gradient maps of inverse projections for six datasets projected using MDS. Darker colors indicate a low rate of change, and lighter areas show a high rate of change. The

number at the bottom right shows the average gradient.

map results, i.e., decision boundaries are fragmented and jagged in
areas where no data points are projected. For the Plane dataset, we
argue that our inverse projection method produces the best map — with
an almost linear boundary that separates the scatterplot into almost
equally sized classes. For the other datasets, the boundaries appear
more jagged with our approach than the others. This demonstrates
uncertainties regarding the class in these regions. Otherwise, we can see
a good separation of classes. For Rings and Blobs, we further see clear

differences between the decision maps when using Multilnv: For Rings,
the map is incorrect close to the deceptive intersection of the two rings,
which is a result of the loss of information induced by the projection.
This shows again that our approach depends more on projection quality
than other inverse projections. For Blobs, the main difference is that
the decision zones of brown noise samples are far smaller in the maps
created by our method. Yet, this is not the case when using the random
forest classifier instead of the k nearest neighbor classifier. The more



D. Blumberg et al.

QOurs - random Ours - filtered

Plane

Iris Blobs Rings

Seismic

Bank

iLAMP

Computers & Graphics 129 (2025) 104234

4
=

Fig. 7. Decision maps of inverse projections for six datasets projected using MDS and classified by a k-nearest neighbor classifier with k = 5.

high-dimensional datasets Seismic and Bank demonstrate again the
limitations of our approach. Yet, the classification is for those datasets
not as easy as for the others since classes are not well separated by the
projection. Similar results for all other projections and classifiers are
given in the Appendix.

5. Discussion

We next discuss several key points of our approach:

Quality: Our results indicate that the effectiveness of Multilnv strongly
depends on the quality of the direct projection P we aim to invert
and also on the dataset’s (intrinsic) dimensionality and configuration
of data samples. We found that the quality of our approach diminishes

with increasing complexity and dimensionality of the dataset. There
are several possible reasons for this: (1) sparse data, (2) high intrinsic
dimensionality, (3) distortions in the direct projection, and (4) the curse
of dimensionality [45].

The two points — distance-preserving nature of P and dataset di-
mensionality — are subtly interconnected. Our key assumption is that
P is able to preserve distances well, something that can be measured
by low stress values. When this is the case, our method can yield
accurate inverse projections. However, this constraint does not hold
for (a) methods P which were not designed with the goal of dis-
tance preservation, e.g., neighborhood-preserving methods like t-SNE
or UMAP; or (b) datasets which, due to their intrinsic dimensionality,
cannot be projected well while keeping distances preserved. As such,
we summarize the application scope of our method to be for situations
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when one knows to have a dataset that can be well projected while
preserving distances. For other cases, we deem more general inverse
projection methods, such as iNN, as more suitable — with the incurred
constraints of such methods, i.e., the need for a training phase and the
possibility of overfitting.

Simplicity: Our method is simple to implement, works for basically
any n-dimensional unlabeled quantitative dataset, and requires only the
number of selection steps s as a free parameter. This contrasts with
other inverse projection methods like SSNP (which needs labeled data)
or any deep-learning method (which needs an architecture tailored to
the input dataset apart from carefully tuned hyperparameter values).

Scalability: Solving linear equation systems has a runtime complexity
of O(N3) (worst case) and O(N?) (best case) for N equations, which
corresponds to computing the inverse of a single target point. For us,
N = n+ 1 for an n-dimensional dataset. Such costs can be decreased
if one looks for an approximate solution — which should be fine in
practice for visualization purposes. When using a randomized reference
point selection strategy for multilateration, the cost is multiplied by
the number of selection steps s. However, when using the random-
ized strategy with filtering, the required number of selection steps
is expected to be lower. Additionally, our method does not require
a training step, such as iNN [36], SSNP [34], or autoencoders[32].
Compared to these methods, our computing effort is limited only to the
inference step. Separately, our technique can be used with progressive
visualizations [46] since our randomized strategies improve in accuracy
with each iteration — a feature that, to our knowledge, none of the
existing inverse projection methods has.

Future Work: While inverse projections can enrich projection scatter-
plots [3,24,47], they must be interpretable to be practically effective.
Algorithm-wise, we claim our technique meets this goal more than
other existing techniques. Yet, improvements are possible. Despite our
negative results partitioning the data by k-means for stratified sampling
and the limitations of a fixed set of reference points, we believe that
the reference point selection can be further optimized. Future work
can explore alternative reference point selection strategies that work
on a non-random basis. When incorporating filtering of data samples
to select reference points, split proportions other than 0% and 20%
could be further investigated. There is also a need to evaluate the
limitations of our approach, including its runtime. Especially for the
novel randomized reference point selection strategy incorporating fil-
tering based on local stress values, it can be interesting to investigate
its influence on the required number of selection steps s in comparison
to the simple randomized approach. As explained, our method’s effec-
tiveness is tied to distance-preserving projections. Future work could
explore adaptations or modifications that enable generalization to other
popular techniques like t-SNE or UMAP, which do not explicitly opti-
mize for distance preservation. In general, inverting high-dimensional
data by multilateration will require many samples to avoid problems
stemming from sparsity. When comparing the quality of our method
for reconstructing known data samples, we detected a match of MSE
patterns to local stress values. Thus, the applicability of multilateration
for evaluating projection methods could be exploited in greater detail.

6. Conclusion

We proposed Multilnv, an extended approach for the multilateration-
based inversion of MDS-class projections. Our technique is purely based
on Euclidean geometry and the assumption of distance preservation.
This avoids the need for more complex machine learning and deep-
learning based approaches, which are hard to fine-tune, understand,
interpret, and predict. Algorithm-wise, our method is simple to im-
plement, efficient to compute, and can be applied to any generic
high-dimensional dataset where the dataset size exceeds the dimension-
ality. We evaluate our inverse projection method by qualitatively and
quantitatively comparing it to three key existing approaches for inverse
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projections, using metric MDS, CCA, Sammon’s mapping, and PCA
as direct projections. Quantitatively, our approach only yields similar
errors in inversely projecting known points if the distances are well pre-
served by the projection, indicated by a low intrinsic dimensionality of
the dataset. Qualitatively, our method produces smoother gradients be-
tween projected points (and clusters thereof), meaning that our method
may be better suited for applications where users (interactively) change
the position of a 2D point to infer a smoothly changing data value.
Decision maps computed by our method strengthen these findings.
Still, our approach reaches limitations when the dimensionality or
complexity of the underlying data is high and projections induce a high
loss of information.
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